EK
E.M. Kelder
189 records found
1
...
We present magnesium alginate as an aqueous polymer electrolyte for use in magnesium batteries. Alginates are polysaccharides extracted from algae, which form hydrogel materials upon interaction with divalent and trivalent cations. They are renewable, non-toxic, biocompatible mat
...
The impact of lithium carbonate on tape cast LLZO battery separators
A balanced interplay between lithium loss and relithiation
Ceramic membranes made of garnet Li7Zr3La2O12 (LLZO) are promising separators for lithium metal batteries because they are chemically stable to lithium metal and can resist the growth of lithium dendrites. Free-standing garnet separators can be produced on a large scale using tap
...
The upcoming energy transition requires not only renewable energy sources but also novel electricity storage systems such as batteries. Despite Li-ion batteries being the main storage systems, other batteries have been proposed to fulfil the requirements on safety, costs, and res
...
We present a sustainable, inherently safe battery chemistry that is based on widely available and cheap materials, that is, iron and manganese hosted in alginate bio-material known from the food and medical industry. The resulting battery can be recycled to allow circularity. The
...
Here we present Positron Annihilation Doppler Broadening Spectroscopy (PADBS) as a powerful method to analyse the origin and development of defect processes in porous silicon structures as a result of alloying with lithium for the use in battery anode applications. Several prepar
...
A novel protocol for the synthesis of perylene diimides (PDIs), by reacting perylene dianhydride (PDA) with aliphatic amines is reported. Full conversions were obtained at temperatures between 20 and 60 °C, using DBU as the base in DMF or DMSO. A "green"synthesis of PDIs, that ru
...
Operando transmission electron microscopy of battery cycling
Thickness dependent breaking of TiO2 coating on Si/SiO2 nanoparticles
Conformal coating of silicon (Si) anode particles is a common strategy for improving their mechanical integrity, to mitigate battery capacity fading due to particle volume expansion, which can result in particle crumbling due to lithiation induced strain and excessive solid-elect
...
An Atomic Force Microscope (AFM) is combined with a special designed glovebox system and coupled to a Galvanostat/Potentiostat to allow measurements on electrochemical properties for battery research. An open cell design with electrical contacts makes it possible to reach the ele
...
X-ray absorption and small-angle x-ray scattering spectra were simultaneously acquired under operando conditions in a joined technique approach, for the first time applied in the field of energy storage materials. This approach allows one to closely follow the electronic and loca
...
Developing multifunctional polymeric binders is key to the design of energy storage technologies with value-added features. We report that a multigram-scale synthesis of perylene diimide polymer (PPDI), from a single batch via polymer analogous reaction route, yields high molecul
...
High-fidelity and facile ex situ transmission electron microscopy (TEM) characterization of lithium−oxygen (Li−O2) batteries is still limited by challenges in preserving the native environment of Li−O2 discharge products. The extreme reactivity and moisture
...
Operando Transmission Electron Microscopy Study of All-Solid-State Battery Interface
Redistribution of Lithium among Interconnected Particles
With operando transmission electron microscopy visualizing the solid-solid electrode-electrolyte interface of silicon active particles and lithium oxide solid electrolyte as a model system, we show that (de)lithiation (battery cycling) does not require all particles to be in dire
...
All-solid-state Li-ion batteries promise safer electrochemical energy storage with larger volumetric and gravimetric energy densities. A major concern is the limited electrochemical stability of solid electrolytes and related detrimental electrochemical reactions, especially beca
...
The unique capability of TEM to resolve the microstructural and chemical evolution of electrode materials during battery operation at high temporal and spatial resolution makes it the method of choice for operando battery experiments. However, the widely used open-cell setup, tha
...
The global quest for intermittent renewable energy sources (wind, solar), consumer goods (mobile phones, notebooks), and electrification of the transport sector (electric vehicles), requires a strong increase in the use of rechargeable energy storages devices, such as batteries.
...
To this day, elucidating the charge transfer process in electrode materials upon electrochemical cycling remains a challenge, primarily due to the complexity of chemical reactions at the electrode surfaces. Here, we present an elegant and reliable method to probe bulk-sensitive s
...
The high Li-ion conductivity of the Li7P3S11 sulfide-based solid electrolyte makes it a promising candidate for all-solid-state lithium batteries. The Li-ion transport over electrode-electrolyte and electrolyte-electrolyte interfaces, vital for th
...
The Sulfonated Poly (Ether Ether Ketone) (sPEEK) is used in many of the developments of polymer electrolyte membranes for fuel cells. In this publication, it is proven that the water in the sPEEK membrane creates channels in the sulfonated clusters by interacting with the sulfoni
...
We developed a dedicated Atomic Force Microscopy set-up in a hermetically closed environment, coupled with a Galvanostat/Potentiostat which will be able to perform in-situ and operando measurements at the cathode-electrolyte and anode-electrolyte interface to monitor the interpha
...
A successful sol-gel process to encapsulate molybdenum di-silicide MoSi2 particles with a closed and thermally stable Al2O3 layer using aluminium tri-sec-butoxide as a precursor is presented. The processing conditions such as precursor selection a
...