Integrated Circuits and Electronic Modules experience concentrated thermal hot spots, which require advanced thermal solutions for effective distribution and dissipation of heat. The superior thermal properties of diamonds are long known, and it is an ideal material for heat-spre
...
Integrated Circuits and Electronic Modules experience concentrated thermal hot spots, which require advanced thermal solutions for effective distribution and dissipation of heat. The superior thermal properties of diamonds are long known, and it is an ideal material for heat-spreading applications. However, growing diamond films to the electronic substrate require complex processing at high temperatures. This research investigates a heterogeneous method of integrating diamond heat spreaders during the back-end packaging process. The semiconductor substrate and the heat spreader thicknesses were optimized based on simulations to realize a thermally enhanced Power Quad-Flat No-Lead package. The performance of the thermally enhanced PQFN was assessed by monitoring the temperature distribution across the active device surface and compared to a standard PQFN (without a heat spreader). Firstly, the thermally enhanced PQFN indicated a 9.6% reduction in junction temperature for an input power of 6.6W with a reduced thermal gradient on the active device surface. Furthermore, the diamond heat spreader's efficiency was observed to increase with increasing power input. Besides, the reliability of the thermally enhanced PQFN was tested by thermal cycling from -55°C to 150°C, which resulted in less than 2% thermal degradation over two-hundred cycles. Such choreographed thermal solutions are proven to enhance the packaged device's performance, and the superior thermal properties of the diamond are beneficial to suffice the increasing demand for high power.
@en