D.A. von Terzi
58 records found
1
This study performed an aerodynamic characterization of the FFA-W3-211 wind turbine tip airfoil in transonic flow using Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations, for both steady and dynamic operational conditions. First, the boundary between subsonic and super
...
The future of wind turbines will be characterised by long, slender blades subject to dynamic inflow and aeroelastic deflections. This makes the next generation of blades more prone to encounter dynamic stall effects, in which significant forces and loads fluctuations can be expec
...
The erosion-safe mode (ESM) is a novel mitigation strategy that reduces rainfall-induced erosion damage by lowering the tip-speed of the turbine during precipitation events. The ESM requires accurate information about future expected rainfall for its control. In current research,
...
The flow around wind turbine towers usually reaches very high Reynolds numbers greater than a million. Understanding the flow around the towers under these conditions is crucial, as it may lead to vibrations due to the vortices formed. Investigating aerodynamic characteristics at
...
For the largest wind turbines currently designed, when operating at rated power and at high wind speeds, the tip airfoils can experience large negative angles of attack. For these conditions and in combination with turbulence, the airfoils are at risk of reaching locally superson
...
In existing wind farms, the overall power output can be increased through yaw control. However, the cooperative control of start/stop, yaw and turbines positions is often overlooked, leading to wake superposition to downstream wind turbines and suboptimal power output. This paper
...
Large-scale exploitation of offshore wind energy is deemed essential to provide its expected share to electricity needs of the future. To achieve the same, turbine and farm-level optimizations play a significant role. Over the past few years, the growth in the size of turbines ha
...
For scenarios of high penetration of renewable energy, it becomes increasingly relevant to improve the dispatchability of supply for wind and solar power plants. Baseload power plants, required to produce a minimum power production at all times, are discussed in this context. The
...
Two setups are used to investigate differences between modeling a wind turbine nacelle by means of an actuator-line model (ALM) and a wall-model (WM) using large-eddy simulations. One advantage of the ALM is that it requires a lower mesh refinement, making it less computationally
...
The ever-growing demand for renewable energy, driven by cost-effectiveness and minimal ecological impacts, has resulted in the deployment of larger wind turbines with rotor diameters surpassing 200 m. This underscores the importance of a thorough understanding of flow dynamics to
...
Vortex-induced vibration (VIV) of wind turbine towers during installation is an aero-structural problem of significant practical relevance. Vibrations may happen in the tower structure, especially when the rotor-nacelle assembly is not yet attached to the tower or if the rotor bl
...
Modern-day wind turbines are growing continuously in size and reach diameters of more than 200m in an effort to meet the fast growing demand for wind energy. As a consequence, the rotors are exposed to larger velocity variations in the approach flow due to the presence of shear,
...
The future generation of wind turbines will be characterised by longer and more flexible blades. These large wind turbines are facing higher Reynolds numbers, as a consequence of longer chord lengths and increased relative wind speeds. Higher tip speeds, however, also result in a
...
To limit the consequences of climate change, generation from renewables coupled with large scale electrification is necessary. However, the deployment of renewables has its own challenges and not all sectors can be electrified. Hydrogen production from wind energy emerges as a pr
...
In pumping airborne wind energy (AWE) systems, the kite is operated in repetitive crosswind patterns, pulling the tether from a winch that drives a generator on the ground. During the reel-out phase of its operation, it produces power, whereas, during the reel-in phase, it consum
...
In this research, we explored the potential to reduce the cost of floating wind farms by adopting an integrated approach to optimally size semi-submersible substructures accounting for materials, fabrication and installation-logistics-related costs. A trade-off between manufactur
...
Offshore wind energy (OWE) is a cornerstone of future clean energy development. Yet, research into global OWE material demand has generally been limited to few materials and/or low technological resolution. In this study, we assess the primary raw material demand and secondary ma
...