MT

M. Tohidian

18 records found

Authored

A novel switched-capacitor low-pass filter architecture is presented. In the proposed scheme, a feedback path is added to a charge-rotating real-pole filter to implement complex poles. The selectivity is enhanced, and the in-band loss is reduced compared with the real-pole fil ...

We present an ultra-low-power Bluetooth low-energy (BLE) transceiver (TRX) for the Internet of Things (IoT) optimized for digital 28-nm CMOS. A transmitter (TX) employs an all-digital phase-locked loop (ADPLL) with a switched current-source digitally controlled oscillator (DCO ...

The zero/low intermediate frequency (IF) receiver (RX) architecture has enabled full CMOS integration. As the technology scales and wireless standards become ever more challenging, the issues related to time-varying dc offsets, the second-order nonlinearity, and flicker noise bec ...

Given the performance decay of high-power light-emitting diode (LED) chips over time and package condition changes, having a reliable output light for sensitive applications is a point of concern. In this study, a light feedback control circuit, including blue-selective photod ...

In this paper, we propose and demonstrate the first fully integrated surface acoustic wave (SAW)-less superheterodyne receiver (RX) for 4G cellular applications. The RX operates in discrete-time domain and introduces various innovations to simultaneously improve noise and lineari ...
In this paper, we exploit an idea of coupling multiple oscillators to reduce phase noise (PN) to beyond the limit of what has been practically achievable so far in a bulk CMOS technology. We then apply it to demonstrate for the first time an RF oscillator that meets the most stri ...
We present a new ultra-low-power (ULP) transceiver for Internet-of-Things (IoT) optimized for 28-nm CMOS. The receiver (RX) employs a high-rate (up to 10 GS/s) discrete-time (DT) architecture with intermediate frequency (IF) placed beyond the 1/f noise corner of MOS devices. New ...
In modern RF system on chips (SoCs), the digital content consumes up to 85% of the IC chip area. The recent push to integrate multiple RF-SoC cores is met with heavy resistance by the remaining RF/analog circuitry, which creates numerous strong aggressors and weak victims leading ...