SB
S. Binsfeld Ferreira
7 records found
1
In this paper, we investigate an impact of voltage supply scaling on power consumption and performance of a new class of wireless receivers (RX) for Internet-of-Things (IoT) applications: a discrete-time (DT) superheterodyne architecture realized in nanoscale CMOS using inverter-
...
We present an ultra-low-power Bluetooth Low Energy (BLE) transceiver for Internet of things (IoT) optimized for 28-nm CMOS. A transmitter (TX) employs an all-digital phase-locked loop (ADPLL) with switched current source digitally controlled oscillator (DCO) and class-E/F2 power
...
We present an ultra-low-power Bluetooth low-energy (BLE) transceiver (TRX) for the Internet of Things (IoT) optimized for digital 28-nm CMOS. A transmitter (TX) employs an all-digital phase-locked loop (ADPLL) with a switched current-source digitally controlled oscillator (DCO) f
...
This paper introduces a system-level approach to develop the first-ever fully discrete-time (DT) superheterodyne receiver (RX) for Internet-of-Things applications, such as Bluetooth low energy (BLE). It exploits fast switching speed and low internal capacitances of deep-nanoscale
...
We present a new ultra-low-power (ULP) transceiver for Internet-of-Things (IoT) optimized for 28-nm CMOS. The receiver (RX) employs a high-rate (up to 10 GS/s) discrete-time (DT) architecture with intermediate frequency (IF) placed beyond the 1/f noise corner of MOS devices. New
...