AM
A.S. Meyer
22 records found
1
Cutting-edge photonic devices frequently rely on microparticle components to focus and manipulate light. Conventional methods used to produce these microparticle components frequently offer limited control of their structural properties or require low-throughput nanofabrication o
...
In-situ resource utilization (ISRU) is increasingly acknowledged as an essential requirement for the construction of sustainable extra-terrestrial colonies. Even with decreasing launch costs, the ultimate goal of establishing colonies must be the usage of resources found at the d
...
Biofilms are aggregates of bacteria embedded in a self-produced spatially-patterned extracellular matrix. Bacteria within a biofilm develop enhanced antibiotic resistance, which poses potential health dangers, but can also be beneficial for environmental applications such as puri
...
Biofilms can grow on virtually any surface available, with impacts ranging from endangering the lives of patients to degrading unwanted water contaminants. Biofilm research is challenging due to the high degree of biofilm heterogeneity. A method for the production of standardized
...
Proteomic analyses provide essential information on molecular pathways of cellular systems and the state of a living organism. Mass spectrometry is currently the first choice for proteomic analysis. However, the requirement for a large amount of sample renders a small-scale prote
...
In stationary-phase Escherichia coli, Dps (DNA-binding protein from starved cells) is the most abundant protein component of the nucleoid. Dps compacts DNA into a dense complex and protects it from damage. Dps has also been proposed to act as a global regulator of transcription.
...
Bacterial growth through microfiltration membranes and NOM characteristics in an MF-RO integrated membrane system
Lab-scale and full-scale studies
Biofilm formation on membrane surfaces causes many operational problems such as a decrease in permeate flux and an increase in hydraulic resistance. In this study, the ability of bacteria to pass through microfiltration (MF) membranes and the growth potential of microfilterable b
...
Sustainable and personally tailored materials production is an emerging challenge to society. Living organisms can produce and pattern an extraordinarily wide range of different molecules in a sustainable way. These natural systems offer an abundant source of inspiration for the
...
Microorganisms have developed an elaborate spectrum of mechanisms to respond and adapt to environmental stress conditions. Among these is the expression of dps, coding for the DNA-binding protein from starved cells. Dps becomes the dominant nucleoid- organizing protein in station
...
In all organisms, DNA molecules are tightly compacted into a dynamic 3D nucleoprotein complex. In bacteria, this compaction is governed by the family of nucleoid-associated proteins (NAPs). Under conditions of stress and starvation, an NAP called Dps (DNA binding protein from sta
...
The influences of natural organic matter (NOM) and bacteriological characteristics on the biological stability of water were investigated in a full-scale drinking water treatment plant. We found that prechlorination decreased the hydrophobicity of the organic matter and significa
...
Nacre (mother of pearl) is an attractive model for the development of new materials. Its sheet structure of alternating layers of calcium carbonate and an organic matrix confers it highly desirable properties such as high toughness and strength. In this study, we produce a nacre-
...
Modular projects and 'mean questions'
Best practices for advising an International Genetically Engineered Machines team
In the yearly Internationally Genetically Engineered Machines (iGEM) competition, teams of Bachelor's and Master's students design and build an engineered biological system using DNA technologies. Advising an iGEM team poses unique challenges due to the inherent difficulties of m
...
Background: Chromosome engineering encompasses a collection of homologous recombination-based techniques that are employed to modify the genome of a model organism in a controlled fashion. Such techniques are widely used in both fundamental and industrial research to introduce mu
...
Bacteria deficient in the DNA-binding protein from starved cells (Dps) are viable under controlled conditions but show dramatically increased mortality rates when exposed to any of a wide range of stresses, including starvation, oxidative stress, metal toxicity, or thermal stress
...