JM
J.P.J. Morits
5 records found
1
Many quantum entanglement generation protocols require phase stabilization between the nodes. For color centers that are embedded in a solid immersion lens (SIL) often a reflection from the SIL’s surface is input to an interferometer where it is mixed with a reference beam. Howev
...
We show the latest progress towards establishing a solid-state, metropolitan quantum link, consisting of two remote Nitrogen Vacancy (NV)-centers and a central measurement station. The entanglement is generated by converting single emitted photons to the same frequency in the tel
...
Entanglement distribution over quantum networks has the promise of realizing fundamentally new technologies. Entanglement between separated quantum processing nodes has been achieved on several experimental platforms in the past decade. To move toward metropolitan-scale quantum n
...
We demonstrate interference of photons emitted by remote, spectrally distinct NV-centers. Quantum frequency conversion at the nodes brings the photons to the same wavelength in the telecom L-band, compatible with entanglement generation at metropolitan scale.@en
Large-scale quantum networks promise to enable secure communication, distributed quantum computing, enhanced sensing and fundamental tests of quantum mechanics through the distribution of entanglement across nodes 1-7. Moving beyond current two-node networks 8-13<
...