Ev

E.J. van Zwet

7 records found

Entanglement generation between remote qubit systems is the central tasks for quantum communication. Future quantum networks will have to be compatible with low-loss telecom bands and operate with large separation between qubit nodes. Single-click heralding schemes can be used to ...
Many quantum entanglement generation protocols require phase stabilization between the nodes. For color centers that are embedded in a solid immersion lens (SIL) often a reflection from the SIL’s surface is input to an interferometer where it is mixed with a reference beam. Howev ...
A key challenge toward future quantum internet technology is connecting quantum processors at metropolitan scale. Here, we report on heralded entanglement between two independently operated quantum network nodes separated by 10 kilometers. The two nodes hosting diamond spin qubit ...
We present a highly efficient low-noise quantum frequency converter from the visible range to telecom wavelengths, combining a pump laser at intermediate frequency resonantly enhanced in an actively stabilized cavity with a monocrystalline bulk crystal. A demonstrator for photons ...
We show the latest progress towards establishing a solid-state, metropolitan quantum link, consisting of two remote Nitrogen Vacancy (NV)-centers and a central measurement station. The entanglement is generated by converting single emitted photons to the same frequency in the tel ...
We demonstrate interference of photons emitted by remote, spectrally distinct NV-centers. Quantum frequency conversion at the nodes brings the photons to the same wavelength in the telecom L-band, compatible with entanglement generation at metropolitan scale.@en
Entanglement distribution over quantum networks has the promise of realizing fundamentally new technologies. Entanglement between separated quantum processing nodes has been achieved on several experimental platforms in the past decade. To move toward metropolitan-scale quantum n ...