AM

A.M.N. Malgoezar

17 records found

Engine noise shielding is an important measure towards low-noise aircraft configurations. Such designs are supported by prediction tools that indicate high values for shielding of engine noise. Most prediction models approximate the complex nature of engine noise to simple noise ...
The recently introduced high-resolution (HR)-CLEAN-SC algorithm for acoustic imaging provides ‘super-resolution’, i.e. the ability to discern sound sources located closer than the Rayleigh resolution limit. This is achieved by allowing the source markers to be relocated from the ...

A review of acoustic imaging methods using phased microphone arrays

Part of the “Aircraft Noise Generation and Assessment” Special Issue

Phased microphone arrays have become a well-established tool for performing aeroacoustic measurements in wind tunnels (both open-jet and closed-section), flying aircraft, and engine test beds. This paper provides a review of the most well-known and state-of-the-art acoustic imagi ...
Humans localize sound incessantly using the ears and it proves to be important of our awareness. It can also be a cause of annoyance to the community whenever sound is in the form of noise. Due to increase of wealth, industry, technology and corresponding globalization there is a ...
Most acoustic imaging methods assume the presence of point sound sources and, hence, may fail to correctly estimate the sound emissions of distributed sound sources, such as trailing-edge noise. In this contribution, three integration techniques are suggested to overcome this iss ...
Ducted propellers are an interesting design choice for unmanned aerial vehicle (UAV) concepts due to a potential increase of the propeller efficiency. In such designs, it is commonly assumed that introducing the duct also results in an overall noise reduction. The objective of th ...
Beamforming performance can be improved in two ways: optimizing the location of microphones on the acoustic array and applying advanced beamforming algorithms. In this study, the effects of the two approaches are studied. An optimization method is developed to optimize the locati ...
The shielding of engine noise by the airframe of an aircraft is considered an effective way of reducing noise levels on the ground. Noise shielding in conventional aircraft is mainly due to the presence of the wings and most model predictions of full-scale aircraft neglect the ef ...

High-resolution CLEAN-SC

Theory and experimental validation

In this article, a high-resolution extension of CLEAN-SC is proposed: high-resolution-CLEAN-SC. Where CLEAN-SC uses peak sources in ‘dirty maps’ to define so-called source components, high-resolution-CLEAN-SC takes advantage of the fact that source components can likewise be deri ...
Advanced propellers promise significant fuel-burn savings compared to turbofans. When installed on the fuselage in a pusher configuration, the propeller interacts with the wake of the supporting pylon. This paper presents an experimental analysis of the aerodynamic and aeroacoust ...
Conventional beamforming with a microphone array is a well-established method for localizing and quantifying sound sources. It provides estimates for the source strengths on a predefined grid by determining the agreement between the pressures measured and those modeled for a sour ...
Assigning proper positions to microphones within arrays is essential in order to reduce or eliminate side- and grating lobes in 2D beamform images. In this paper an objective function is derived providing a measure for the presence of artificial sources. Using the global optimiza ...
Conventional beamforming is a common method to localize sound sources with a microphone array. The method, which is based on the delay-and-sum beamforming, provides an estimate value for the source strength at a given spatial position. It suffers from low spatial resolution at lo ...