IB

I. Batashev

17 records found

Authored

The magnetocaloric properties of Mn5Si1-xPxB2 (0 ≤ x ≤ 1) compounds were studied for energy harvesting applications. The crystal structure and the magnetic structure were characterized by powder X-Ray Diffraction and powder Neutron D ...

Structural, magnetic and magnetocaloric properties of Mn3Sn1-xZnxC antiperovskite carbides have been studied. With increasing Zn content the first-order magnetic transition (FOMT) is weakened. The Curie temperature (TC) re ...

The influence of doping with the 5d transition metal W has been studied in the quaternary (Mn,Fe)2(P,Si) based giant magnetocaloric compounds, which is one of the most promising systems for magnetic refrigeration. It is found that W substitution can separately decre ...

The influence of off-stoichiometry and of doping with the 5d transition metal Ta has been studied in the quaternary (Mn,Fe)2(P,Si)-based compound, which is one of the most promising materials systems for magnetic refrigeration. It is found that Ta substitution can d ...

The transition-metal based Laves phase materials represent an extended family of alloys with rich and fascinating physical properties. In this work, we have investigated the negative thermal expansion and magnetocaloric effect in arc-melted and melt-spun Fe2Hf1 ...

The magnetocaloric effect (MCE) is a thermal response of a magnetic material to a change in an external magnetic field. With the discovery of materials exhibiting a giant magnetocaloric effect in the vicinity of room temperature, several applications of this phenomenon have been ...

The effect of Co and Ni doping on the structure, magnetic and magnetocaloric properties of Fe-rich (Mn,Fe)2(P,Si) compounds was studied. With increasing Co and Ni content, both the Curie temperature (Tc) and the thermal hysteresis (ΔThys) decre ...

The novel all-d-metal Ni(Co)MnTi based magnetic Heusler alloys provide an adjustable giant magnetocaloric effect and good mechanical properties. We report that the second-order magnetic phase transition can be tailored in this all-d-metal NiCoMnTi based Heusler system by optim ...

The influence of excess Mn on the magnetoelastic ferromagnetic-to-antiferromagnetic transition Tt in the magnetocaloric compound (Mn,Cr)2Sb has been studied. With increasing excess Mn the magnetoelastic transition temperature for (Mn,Cr)2Sb ini ...

The all-d-metal Ni-(Co)-Mn-Ti-based Heusler alloys are found to show a giant magnetocaloric effect near room temperature and are thereby potential materials for solid-state refrigeration. However, the relative large thermal hysteresis and the moderate ferromagnetic magnetizati ...

The quarternary (Mn,Fe)2(P,Si)-based materials with a giant magnetocaloric effect (GMCE) at the ferromagnetic transition TC are promising bulk materials for solid-state magnetic refrigeration. In the present study we demonstrate that doping with the light ...

The interest in the magnetic cooling devices has led to an intensive search for suitable well-performing magnetocaloric materials. High-throughput studies based on density functional theory (DFT) calculations can significantly simplify and increase the range of this search. In ...

The physical properties of the extensively studied Fe2P material family, well-known for its promising magnetocaloric qualities are greatly influenced by the unit-cell parameters of this hexagonal system. This sensitivity of the various magnetocaloric properties to s ...

The influence of partial substitution of Bi for Sb on the structure, magnetic properties and magnetocaloric effect of Mn2Sb1-xBix (x = 0, 0.02, 0.04, 0.05, 0.07, 0.09, 0.15, 0.20) compounds has been investigated. The transition temperature of t ...

The giant magnetocaloric effect is widely achieved in hexagonal MnMX-based (M = Co or Ni, X = Si or Ge) ferromagnets at their first-order magnetostructural transition. However, the thermal hysteresis and low sensitivity of the magnetostructural transition to the magnetic field ...

Ni-Mn-X (X = In, Sn, and Sb) based Heusler alloys show a strong potential for magnetic refrigeration owing to their large magnetocaloric effect (MCE) associated with first-order magnetostructural transition. However, the irreversibility of the MCE under low field change of 0–1 T ...

Contributed

In this report, a model is presented to alleviate some of the computational work that goes into the effort of finding the magnetic properties of magnetocaloric materials. The model utilizes an interior point optimization routine to solve for the minimal exchange energy configurat ...