NF

N. M. Farhat

24 records found

Authored

Seawater desalination based drinking water

Microbial characterization during distribution with and without residual chlorine

Monitoring the changes that occur to water during distribution is vital to ensure water safety. In this study, the biological stability of reverse osmosis (RO) produced drinking water, characterized by low cell concentration and low assimilable organic carbon, in combination w ...

Desalination technology based on Reverse Osmosis (RO) membrane filtration has been resorted to provide high-quality drinking water. RO produced drinking water is characterized by a low bacterial cell concentration. Monitoring microbial quality and ensuring membrane-treated wat ...

Periodic chemical cleaning with urea

Disintegration of biofilms and reduction of key biofilm-forming bacteria from reverse osmosis membranes

Biofouling is one of the major factors causing decline in membrane performance in reverse osmosis (RO) plants, and perhaps the biggest hurdle of membrane technology. Chemical cleaning is periodically carried out at RO membrane installations aiming to restore membrane performan ...

Biofouling is a problem that hinders sustainable membrane-based desalination and the stratification of bacterial populations over the biofilm’s height is suggested to compromise the efficiency of cleaning strategies. Some studies reported a base biofilm layer attached to the m ...

A critical problem in seawater reverse osmosis (RO) filtration processes is biofilm accumulation, which reduces system performance and increases energy requirements. As a result, membrane systems need to be periodically cleaned by combining chemical and physical protocols. Nut ...

Cartridge filter selection and replacement

Optimization of produced water quantity, quality, and cost

In this study at a full-scale desalination installation seven types of commercially available cartridge filter (CF) elements were evaluated in terms of: (i) water production volume (m3), (ii) produced water quality, and (iii) operational cost (€cent/m3). ...

The use of traditional drinking water microbial quality monitoring methods, including heterotrophic plate counts (HPCs) and total coliform counts, are not only laborious and time-consuming but also do not readily allow identification of risk areas in the network. Furthermore, ...

Nutrient limitation is a biofouling control strategy in reverse osmosis (RO) membrane systems. In seawater, the assimilable organic carbon content available for bacterial growth ranges from about 50 to 400 μg C·L−1, while the phosphorus concentration ranges from 3 t ...

Phosphate limitation has been suggested as a preventive method against biofilms. P-limited feed water was studied as a preventive strategy against biofouling in cooling towers (CTs). Three pilot-scale open recirculating CTs were operated in parallel for five weeks. RO permeate ...

Role of feed water biodegradable substrate concentration on biofouling

Biofilm characteristics, membrane performance and cleanability

Biofouling severely impacts operational performance of membrane systems increasing the cost of water production. Understanding the effect of critical parameters of feed water such as biodegradable substrate concentration on the developed biofilm characteristics enables develop ...

Impact of membrane biofouling in the sequential development of performance indicators

Feed channel pressure drop, permeability, and salt rejection

Biofouling development is affected by a variety of factors that change over the length of reverse osmosis (RO) membrane modules in pressure vessels. Spatially resolved biofouling formation was studied under conditions representative to practice using four one-meter Long Channe ...

Routine chemical cleaning with the combined use of sodium hydroxide (NaOH) and hydrochloric acid (HCl) is carried out as a means of biofouling control in reverse osmosis (RO) membranes. The novelty of the research presented herein is in the application of urea, instead of NaOH ...

Chemical cleaning is routinely performed in reverse osmosis (RO) plants for the regeneration of RO membranes that suffer from biofouling problems. The potential of urea as a chaotropic agent to enhance the solubilizatio ...

The bacterial growth potential is important to understand and manage bacterial regrowth-related water quality concerns. Bacterial growth potential depends on growth promoting/limiting compounds, therefore, nutrient availability is the key factor governing bacterial growth pote ...

Biofouling studies addressing biofouling control are mostly executed in short-term studies. It is unclear whether data collected from these experiments are representative for long-term biofouling as occurring in full-scale membrane systems. This study investigated whether short-t ...

Surface coating of membranes may be a promising option to control biofilm development and biofouling impact on membrane performance of spiral-wound reverse osmosis (RO) systems. The objective of this study was to investigate the impact of an amphiphilic copolymer coating on bi ...

Biofouling patterns in spacer-filled channels

High-resolution imaging for characterization of heterogeneous biofilms

Biofilms develop in heterogeneous patterns at a µm scale up to a cm scale, and patterns become more pronounced when biofilms develop under complex hydrodynamic flow regimes. Spatially heterogeneous biofilms are especially known in spiral wound reverse osmosis (RO) and nanofiltrat ...

Mini-review

Novel non-destructive in situ biofilm characterization techniques in membrane systems

Membrane systems are commonly used in the water industry to produce potable water and for advanced wastewater treatment. One of the major drawbacks of membrane systems is biofilm formation (biofouling), which results in an unacceptable decline in membrane performance. Three novel ...

Understanding the factors that determine the spatial and temporal biofilm development is a key to formulate effective control strategies in reverse osmosis membrane systems for desalination and wastewater reuse. In this study, biofilm development was investigated at different ...

The spatially heterogeneous distribution of biofouling in spiral wound membrane systems restricts (i) the water distribution over the membrane surface and therefore (ii) the membrane-based water treatment. The objective of the study was to assess the spatial heterogeneity of b ...