An Intrinsically Linear Wideband Digital Polar PA Featuring AM-AM and AM-PM Corrections Through Nonlinear Sizing, Overdrive-Voltage Control, and Multiphase RF Clocking

More Info
expand_more

Abstract

To fully benefit from the progress of CMOS technologies, it is desirable to completely digitize the TX, replacing its final stage with a digitally controlled PA (DPA). The DPA consists of arrays of small sub-PAs that are digitally controlled to modulate the output amplitude, thus operating as an RF-DAC [1-6]. DPAs are normally designed in a switched mode (Classes E/D/D-1, etc.) to achieve high efficiency while using high sampling rate to attenuate and push the spectral images to higher frequencies. However, they suffer from high nonlinearity in their AM-code-word (ACW) to AM and ACW-to-PM conversion. To correct for such nonlinearities, digital pre-distortion (DPD) of the input signal is often used [1-3], typically implemented by look-up tables (LUT). Unfortunately, DPD approaches suffer from large signal-BW expansion due to their inherently nonlinear characteristics. This, combined with the already present BW regrowth in a polar TX in the AM and PM paths, yields significant hardware-speed/power constraints when the signal BW becomes large. For a Cartesian TX, the use of LUT-DPD is even more complicated since a full 2D LUT is typically required [2]. To relax the overall system complexity, it is highly desirable to have a PA with a maximum inherent linearity without compromising its power or efficiency. In this work, an ACW-AM correction based on nonlinear sizing along with controlling the peak voltage of RF clocks (overdrive voltage tuning) and a ACW-PM correction based on multiphase RF clocking are introduced to linearize the characteristic curves of a Class-E polar DPA with intent to avoid any kind of pre-distortion.

Files

07870380.pdf
(pdf | 3.98 Mb)

Download not available