Jv
J.C. van Dijk
6 records found
1
This paper presents an encoder-decoder-style convolutional neural network (CNN) for the purpose of improving monocular and stereo depth estimation (SDE) estimates, by combining them with the corresponding monocular estimates through a fusion network, assisted by prior information
...
We present a computationally cheap 3D bug algorithm for drones, using stereo vision. Obstacle avoidance is important, but difficult for robots with limited resources, such as drones. Stereo vision requires less weight and power than active distance measurement sensors, but typica
...
Self-supervised deep learning methods have leveraged stereo images for training monocular depth estimation. Although these methods show strong results on outdoor datasets such as KITTI, they do not match performance of supervised methods on indoor environments with camera rotatio
...
Acoustic-Based Aircraft Detection and Ego-Noise Suppression
For Micro Aerial Vehicles
Widespread usage of Micro Aerial Vehicles (MAVs) has led to various airspace safety breaches, including near mid-air collisions with other aircraft. To ensure safe integration into general aviation, it is paramount that MAVs are equipped with an autonomous detect and avoid system
...
The last years there is a wide interest in UAVs which can be attributed to their low cost and wide range of use in recreational, commercial and scientific applications. Despite the large increase in drones, UAV flights are permitted only in secluded areas. In order to be granted
...
We investigate how an Unmanned Air Vehicle (UAV) can detect manned aircraft with a single microphone. In particular, we create an audio data set in which UAV ego-sound and recorded aircraft sound can be mixed together, and apply convolutional neural networks to the task of air tr
...