N. Eleftheroglou
23 records found
1
In recent years, prognostics gained attention in various industries by optimizing maintenance, boosting operational efficiency, and preventing costly downtime. Central to prognostics is the Remaining Useful Life (RUL), representing the critical time before system failure. Deep le
...
Data-driven methodologies have found increasing usage in the last decade for remaining useful life (RUL) prognostics of composite materials utilizing structural health monitoring (SHM) data. Of particular interest is the reliable RUL prediction in cases where the end-of-life is n
...
An increasing interest for Structural Health Monitoring has emerged in the last decades. Acoustic emission (AE) is one of the most popular and widely studied methodologies employed for monitoring, due to its capabilities of detecting, locating and capturing the evolution of damag
...
Prognosis of the Remaining Useful Life (RUL) of a structure from Structural Health Monitoring data is the ultimate level in the SHM hierarchy. Reliable prognostics are key to a Condition Based Maintenance paradigm for aerospace systems and structures. In the present work, we prop
...
Adaptive Prognostics
A reliable RUL approach
In the past decade, data-driven methodologies have gained increasing popularity, offering a foundation for predicting the remaining useful life (RUL) of engineering systems and structures using condition monitoring (CM) data. A particularly intriguing challenge lies in accurately
...
We present a generic methodology for developing a Health Indicator out of strain-based Structural Health Monitoring data suitable for implementation in prognostic tasks. For this purpose, an in-house test campaign is launched. Single-stringered composite panels are subjected to c
...
We investigate the performance of three different data-driven prognostic methodologies towards the Remaining Useful Life estimation of commercial aircraft brakes being continuously monitored for wear. The first approach utilizes a probabilistic multi-state deterioration mathemati
...
This paper presents the results for an experimental campaign of in-situ impact during tension-tension fatigue loading for open-hole carbon fibre reinforced polymer specimens. High-speed low energy impact was introduced to the specimen with the use of a canon, which was attached t
...
Data driven probabilistic methodologies have found increasing use the last decade and provide a platform for the remaining useful life (RUL) prediction of composite structures utilizing health-monitoring data. Of particular interest is the RUL prediction of composite structures t
...
In this paper, temperature measurements are utilized to develop health indicators based on principal component analysis toward the probabilistic estimation of the remaining useful life (RUL) of reciprocating compressors in service. Temperature degradation histories obtained from
...
Prognostics is an emerging field of research that enables the real-time health assessment of an engineering system and the prediction of its future state based on up-to-date information. This field integrates various scientific disciplines including physics/mechanics, computation
...
In this paper, the discharge voltage is utilized as a critical indicator towards the probabilistic estimation of the Remaining Useful Life until the End-of-Discharge of the Lithium-Polymer batteries of unmanned aerial vehicles. Several discharge voltage histories obtained during
...
This paper examines diagnostics and prognostics of Lithium-Polymer (Li-Po) batteries for unmanned aerial vehicles (UAVs). Several discharge voltage histories obtained during actual indoor flights constitute the training data for a data-driven approach, utilizing the Non-Homogenou
...
The procedure of fatigue damage accumulation in composite structures is still unknown and depends on several parameters such as type and frequency of loading, stacking sequence and material properties. Additionally, the nonhomogeneous and anisotropic nature of composites result t
...
A novel framework to fuse structural health monitoring (SHM) data from different in-situ monitoring techniques is proposed aiming to develop a hyper-feature towards more effective prognostics. A state-of-the-art Non-Homogenous Hidden Semi Markov Model (NHHSMM) is utilized to mode
...
The procedure of fatigue damage accumulation in composite structures, is a complex phenomenon due to the multiphase nature of composites, the variation of inherent manufacturing defects, the randomness of loads, the stochastic activation of different damage mechanisms and an inco
...
A prognostic framework is proposed in order to estimate the remaining useful life of composite materials under fatigue loading based on acoustic emission data and a sophisticated Non Homogenous Hidden Semi Markov Model. Bayesian neural networks are also utilized as an alternative
...
This paper presents an experimental investigation on the effect of creep on the damage evolution of Carbon Fiber Reinforced Polymer structures during fatigue loading. A new experimental campaign is proposed where unidirectional CFRP specimens are tested under the combination of f
...
The present study utilizes a state-of-the-art stochastic modeling with structural health monitoring (SHM) data derived from strain measurements, in order to assess the remaining useful life (RUL) online in composite materials under fatigue loading. Non-Homogenous Hidden Semi Mark
...