BP
B. Pouran
58 records found
1
Direct metal printed (DMP) porous iron implants possess promising mechanical and corrosion properties for various clinical application. Nevertheless, there is a requirement for better co-relation between in vitro and in vivo corrosion and biocompatibility behaviour of such biomat
...
As compared to magnesium (Mg) and iron (Fe), solid zinc (Zn)-based absorbable implants show better degradation rates. An ideal bone substitute should provide sufficient mechanical support, but pure Zn itself is not strong enough for load-bearing medical applications. Modern proce
...
The ideal bone substituting biomaterials should possess bone-mimicking
mechanical properties; have of porous interconnected structure, and
adequate biodegradation behaviour to enable full recovery of bony
defects. Direct metal printed porous scaffolds hold potential to satisfy
...
The innovative design of orthopedic implants could play an important role in the development of life-lasting implants, by improving both primary and secondary implant fixations. The concept of meta-biomaterials aims to achieve a unique combination of mechanical, mass transport, a
...
Tissue engineering and regenerative medicine are two therapeutic strategies to treat, and to potentially cure, diseases affecting cartilaginous tissues, such as osteoarthritis and cartilage defects. Insights into the processes occurring during regeneration are essential to steer
...
Polyetheretherketone (PEEK) is commonly used as a spinal spacer for intervertebral fusion surgery. Unfortunately, PEEK is bioinert and does not effectively osseointegrate into living bone. In contrast, comparable spacers made of silicon nitride (Si3N4) posse
...
Additively manufactured (AM) biodegradable metals with topologically ordered porous structures hold unprecedented promise as potential bone substitutes. The first reports on this type of biomaterials have just recently appeared in the literature. There is, however, no information
...
Effects of body mass on microstructural features of the osteochondral unit
A comparative analysis of 37 mammalian species
Since Galileo's days the effect of size on the anatomical characteristics of the structural elements of the body has been a subject of interest. However, the effects of scaling at tissue level have received little interest and virtually no data exist on the subject with respect t
...
The main challenge in bone morphogenic protein 2 (BMP-2)-based application lies in finding strategies that prolong its effective period as it has a short biological half-life. Several BMP-2 release profiles have shown to enhance bone formation at vari
...
Background and Purpose: Corticosteroids are intra-articularly injected to relieve pain in joints with osteoarthritis (OA) or acute tissue damage such as ligament or tendon tears, despite its unverified contraindication in unstable joints. Biomaterial-based sustained delivery may
...
Additively manufactured (AM) functionally graded porous metallic biomaterials offer unique opportunities to satisfy the contradictory design requirements of an ideal bone substitute. However, no functionally graded porous structures have ever been 3D-printed from biodegradable me
...
Immune cells and their soluble factors regulate skeletal cells during normal bone regeneration and pathological bone formation. Bacterial infections can trigger immune responses that activate pro-osteogenic pathways, but these are usually overshadowed by osteolysis and concerns o
...
Implant-associated infections (IAI) are often recurrent, expensive to treat, and associated with high rates of morbidity, if not mortality. We biofunctionalized the surface of additively manufactured volume-porous titanium implants using electrophoretic deposition (EPD) as a way
...
Fatigue performance of additively manufactured meta-biomaterials
The effects of topology and material type
Additive manufacturing (AM) techniques enable fabrication of bone-mimicking meta-biomaterials with unprecedented combinations of topological, mechanical, and mass transport properties. The mechanical performance of AM meta-biomaterials is a direct function of their topological de
...
This study aims to investigate the earliest alterations of bone and cartilage tissues as a result of different exercise protocols in the knee joint of Wistar rats. We hypothesize that pretraining to a continuous intense running protocol would protect the animals from cartilage de
...
Bone substitutes are frequently used in clinical practice but often exhibit limited osteoinductivity. We hypothesized that unfocused shockwaves enhance the osteoinductivity of bone substitutes and improve osteointegration and angiogenesis. Three different bone substitutes, namely
...
An important aspect in cartilage ageing is accumulation of advanced glycation end products (AGEs) after exposure to sugars. Advanced glycation results in cross-links formation between the collagen fibrils in articular cartilage, hampering their flexibility and making cartilage mo
...
Anterior longitudinal ligament in diffuse idiopathic skeletal hyperostosis
Ossified or displaced?
Diffuse idiopathic skeletal hyperostosis (DISH) is often theorized to be an ossification of the anterior longitudinal ligament (ALL). Using computed tomography (CT) imaging and cryomacrotome sectioning, we investigated the spatial relationship between the ALL and newly formed bon
...
In this study, we tried to quantify the isolated and modulated effects of topological design and material type on the mechanical properties of AM porous biomaterials. Towards this aim, we assembled a large dataset comprising the mechanical properties of AM porous biomaterials wit
...