CS
Celine Scornavacca
12 records found
1
Phylogenetic networks are often constructed by merging multiple conflicting phylogenetic signals into a directed acyclic graph. It is interesting to explore whether a network constructed in this way induces biologically-relevant phylogenetic signals that were not present in the i
...
Popular methods for exploring the space of rooted phylogenetic trees use rearrangement moves such as rooted Nearest Neighbour Interchange (rNNI) and rooted Subtree Prune and Regraft (rSPR). Recently, these moves were generalized to rooted phylogenetic networks, which are a more s
...
Phylogenetic networks arewell suited to represent evolutionary histories comprising reticulate evolution. Several methods aiming at reconstructing explicit phylogenetic networks have been developed in the last two decades. In this article, we propose a new definition of maximum p
...
Phylogenetic tree reconstruction is usually done by local search heuristics that explore the space of the possible tree topologies via simple rearrangements of their structure. Tree rearrangement heuristics have been used in combination with practically all optimization criteria
...
Given a finite set X, a collection Tof rooted phylogenetic trees on Xand an integerk, theHybridization Numberproblem asks if there exists a phylogenetic network onXthat displays all trees fromTand has reticulation number at mostk. We show two kernelization algorithms forHybridiza
...
Phylogenetic networks are increasingly used in evolutionary biology to represent the history of species that have undergone reticulate events such as horizontal gene transfer, hybrid speciation and recombination. One of the most fundamental questions that arise in this context is
...
Binets and
Binets and trinets are phylogenetic networks with two and three leaves, respectively. Here we consider the problem of deciding if there exists a binary level-1 phylogenetic network displaying a given set TT of binary binets or trinets over a taxon set X, and constructing such a network whenever it exists. We show that this is NP-hard for trinets but polynomial-time solvable for binets. Moreover, we show that the problem is still polynomial-time solvable for inputs consisting of binets and trinets as long as the cycles in the trinets have size three. Finally, we present an O(3|X|poly(|X|))O(3|X|poly(|X|)) time algorithm for general sets of binets and trinets. The latter two algorithms generalise to instances containing level-1 networks with arbitrarily many leaves, and thus provide some of the first supernetwork algorithms for computing networks from a set of rooted phylogenetic networks.@en
Background
Reticulate events play an important role in determining evolutionary relationships. The problem of computing the minimum number of such events to explain discordance between two phylogenetic trees is a hard computational problem. Even for binary trees, exact solvers st
...
We show that the problem of computing the hybridization number of two rooted binary phylogenetic trees on the same set of taxa $X$ has a constant factor polynomial-time approximation if and only if the problem of computing a minimum-size feedback vertex set in a directed graph (D
...
Rooted phylogenetic networks are often used to represent conflicting phylogenetic signals. Given a set of clusters, a network is said to represent these clusters in the softwiredsense if, for each cluster in the input set, at least one tree embedded in the network contains that c
...