Lv

73 records found

In evolutionary biology, networks are becoming increasingly used to represent evolutionary histories for species that have undergone non-treelike or reticulate evolution. Such networks are essentially directed acyclic graphs with a leaf set that corresponds to a collection of spe ...
The Hybridization problem asks to reconcile a set of conflicting phylogenetic trees into a single phylogenetic network with the smallest possible number of reticulation nodes. This problem is computationally hard and previous solutions are limited to small and/or severely restric ...
How many reticulations are needed for a phylogenetic network to display a given set of k phylogenetic trees on n leaves? For k = 2, Baroni et al. [Ann. Comb. 8, 391-408 (2005)] showed that the answer is n − 2. Here, we show that, for k ≥ 3 the answer is at least (3 /2 − ε)n. Conc ...
The maximum parsimony distance dMP(T1,T2) and the bounded-state maximum parsimony distance dMPt(T1,T2) measure the difference between two phylogenetic trees T1,T2 in terms of the ma ...
This paper studies the relationship between undirected (unrooted) and directed (rooted) phylogenetic networks. We describe a polynomial-time algorithm for deciding whether an undirected nonbinary phylogenetic network, given the locations of the root and reticulation vertices, can ...
Graph invariants are a useful tool in graph theory. Not only do they encode useful information about the graphs to which they are associated, but complete invariants can be used to distinguish between non-isomorphic graphs. Polynomial invariants for graphs such as the well-known ...
Phylogenetic networks are used to represent the evolutionary history of species. Recently, the new class of orchard networks was introduced, which were later shown to be interpretable as trees with additional horizontal arcs. This makes the network class ideal for capturing evolu ...
Background: Combining a set of phylogenetic trees into a single phylogenetic network that explains all of them is a fundamental challenge in evolutionary studies. Existing methods are computationally expensive and can either handle only small numbers of phylogenetic trees or are ...
Recently it was shown that a certain class of phylogenetic networks, called level-2 networks, cannot be reconstructed from their associated distance matrices. In this paper, we show that they can be reconstructed from their induced shortest and longest distance matrices. That is, ...
We study the problem of finding a temporal hybridization network containing at most k reticulations, for an input consisting of a set of phylogenetic trees. First, we introduce an FPT algorithm for the problem on an arbitrary set of m binary trees with n leaves each with a runnin ...
We present the first fixed-parameter algorithm for constructing a tree-child phylogenetic network that displays an arbitrary number of binary input trees and has the minimum number of reticulations among all such networks. The algorithm uses the recently introduced framework of c ...
Evolutionary histories for species that cross with one another or exchange genetic material can be represented by leaf-labelled, directed graphs called phylogenetic networks. A major challenge in the burgeoning area of phylogenetic networks is to develop algorithms for building s ...
Phylogenetic networks are used in biology to represent evolutionary histories. The class of orchard phylogenetic networks was recently introduced for their computational benefits, without any biological justification. Here, we show that orchard networks can be interpreted as tree ...
Given a rooted, binary phylogenetic network and a rooted, binary phylogenetic tree, can the tree be embedded into the network? This problem, called Tree Containment, arises when validating networks constructed by phylogenetic inference methods. We present the first algorithm for ...
Combining a set of phylogenetic trees into a single phylogenetic network that explains all of them is a fundamental challenge in evolutionary studies. In this paper, we apply the recently-introduced theoretical framework of cherry picking to design a class of heuristics that are ...
Phylogenetic networks can represent evolutionary events that cannot be described by phylogenetic trees. These networks are able to incorporate reticulate evolutionary events such as hybridization, introgression, and lateral gene transfer. Recently, network-based Markov models of ...
Background: Rooted phylogenetic networks are used to display complex evolutionary history involving so-called reticulation events, such as genetic recombination. Various methods have been developed to construct such networks, using for example a multiple sequence alignment or mul ...
Phylogenetic networks are used to represent evolutionary relationships between species in biology. Such networks are often categorized into classes by their topological features, which stem from both biological and computational motivations. We study two network classes in this p ...
A phylogenetic network is a graph-theoretical tool that is used by biologists to represent the evolutionary history of a collection of species. One potential way of constructing such networks is via a distance-based approach, where one is asked to find a phylogenetic network that ...
A common problem in phylogenetics is to try to infer a species phylogeny from gene trees. We consider different variants of this problem. The first variant, called Unrestricted Minimal Episodes Inference, aims at inferring a species tree based on a model with speciation and dupli ...