MJ

M.E.L. Jones

25 records found

This paper studies the relationship between undirected (unrooted) and directed (rooted) phylogenetic networks. We describe a polynomial-time algorithm for deciding whether an undirected nonbinary phylogenetic network, given the locations of the root and reticulation vertices, can ...
The maximum parsimony distance dMP(T1,T2) and the bounded-state maximum parsimony distance dMPt(T1,T2) measure the difference between two phylogenetic trees T1,T2 in terms of the ma ...
How many reticulations are needed for a phylogenetic network to display a given set of k phylogenetic trees on n leaves? For k = 2, Baroni et al. [Ann. Comb. 8, 391-408 (2005)] showed that the answer is n − 2. Here, we show that, for k ≥ 3 the answer is at least (3 /2 − ε)n. Conc ...
Phylogenetic Diversity (PD) is a measure of the overall biodiversity of a set of present-day species (taxa) within a phylogenetic tree. We consider an extension of PD to phylogenetic networks. Given a phylogenetic network with weighted edges and a subset S of leaves, the all-path ...
Phylogenetic networks are used to represent the evolutionary history of species. Recently, the new class of orchard networks was introduced, which were later shown to be interpretable as trees with additional horizontal arcs. This makes the network class ideal for capturing evolu ...
We study the problem of finding a temporal hybridization network containing at most k reticulations, for an input consisting of a set of phylogenetic trees. First, we introduce an FPT algorithm for the problem on an arbitrary set of m binary trees with n leaves each with a runnin ...
Recently it was shown that a certain class of phylogenetic networks, called level-2 networks, cannot be reconstructed from their associated distance matrices. In this paper, we show that they can be reconstructed from their induced shortest and longest distance matrices. That is, ...
Phylogenetic networks are used in biology to represent evolutionary histories. The class of orchard phylogenetic networks was recently introduced for their computational benefits, without any biological justification. Here, we show that orchard networks can be interpreted as tree ...
In the NP-hard Longest Common Subsequence problem (LCS), given a set of strings, the task is to find a string that can be obtained from every input string using as few deletions as possible. LCS is one of the most fundamental string problems with numerous applications in various ...
Given a rooted, binary phylogenetic network and a rooted, binary phylogenetic tree, can the tree be embedded into the network? This problem, called Tree Containment, arises when validating networks constructed by phylogenetic inference methods. We present the first algorithm for ...
We present the first fixed-parameter algorithm for constructing a tree-child phylogenetic network that displays an arbitrary number of binary input trees and has the minimum number of reticulations among all such networks. The algorithm uses the recently introduced framework of c ...
Phylogenetic networks can represent evolutionary events that cannot be described by phylogenetic trees. These networks are able to incorporate reticulate evolutionary events such as hybridization, introgression, and lateral gene transfer. Recently, network-based Markov models of ...
Phylogenetic networks are used to represent evolutionary relationships between species in biology. Such networks are often categorized into classes by their topological features, which stem from both biological and computational motivations. We study two network classes in this p ...

Maximum parsimony distance on phylogenetic trees

A linear kernel and constant factor approximation algorithm

Maximum parsimony distance is a measure used to quantify the dissimilarity of two unrooted phylogenetic trees. It is NP-hard to compute, and very few positive algorithmic results are known due to its complex combinatorial structure. Here we address this shortcoming by showing tha ...
Phylogenetic networks are important for the study of evolution. The number of methods to find such networks is increasing, but most such methods can only reconstruct small networks. To find bigger networks, one can attempt to combine small networks. In this paper, we study the Ne ...
A common problem in phylogenetics is to try to infer a species phylogeny from gene trees. We consider different variants of this problem. The first variant, called Unrestricted Minimal Episodes Inference, aims at inferring a species tree based on a model with speciation and dupli ...

Treewidth of display graphs

Bounds, brambles and applications

Phylogenetic trees and networks are leaf-labelled graphs used to model evolution. Display graphs are created by identifying common leaf labels in two or more phylogenetic trees or networks. The treewidth of such graphs is bounded as a function of many common dissimilarity measure ...
Unrooted phylogenetic networks are graphs used to represent reticulate evolutionary relationships. Accurately reconstructing such networks is of great relevance for evolutionary biology. It has recently been conjectured that all unrooted phylogenetic networks for at least five ta ...
Network reconstruction lies at the heart of phylogenetic research. Two well-studied classes of phylogenetic networks include tree-child networks and level-k networks. In a tree-child network, every non-leaf node has a child that is a tree node or a leaf. In a level-k network, the ...
Perfect phylogenies are fundamental in the study of evolutionary trees because they capture the situation when each evolutionary trait emerges only once in history; if such events are believed to be rare, then by Occam's Razor such parsimonious trees are preferable as a hypothesi ...