PS
P. Simões Costa
13 records found
1
During the last decade, many approaches for resolved-particle simulation (RPS) have been developed for numerical studies of finite-size particle-laden turbulent flows. In this paper, three RPS approaches are compared for a particle-laden decaying turbulence case. These methods ar
...
We use interface-resolved numerical simulations to study finite-size effects in turbulent channel flow of neutrally buoyant spheres. Two cases with particle sizes differing by a factor of two, at the same solid volume fraction of 20 % and bulk Reynolds number are considered. Thes
...
We study suspensions of oblate rigid particles in a viscous fluid for different values of the particle volume fractions. Direct numerical simulations have been performed using a direct-forcing immersed boundary method to account for the dispersed phase, combined with a soft-spher
...
We study turbulent channel flow of a binary mixture of finite-sized neutrally buoyant rigid particles by means of interface-resolved direct numerical simulations. We fix the bulk Reynolds number and total solid volume fraction, Reb=5600 and Φ=20% , and vary the relative fraction
...
Transport of particles by a carrier fluid is an important, ubiquitous process. Few of many obvious examples are the blood flow that feeds oxygen to the different parts of our bodies, wind-assisted pollination, sediment transport in sand storms, avalanches, or rivers, cloud format
...
We present interface-resolved numerical simulations of turbulent channel flow laden with non-spherical rigid and neutrally-buoyant particles. We first focus on the case of oblate particles of aspect ratio 1/3 at volume fractions up to 15% and show that the turbulent drag is decre
...
Dense suspensions are usually investigated in the laminar limit where inertial effects are insignificant. In this regime, the main effect of the suspended phase is to alter the rheological behavior of the flow which always displays higher effective viscosity with respect to the c
...
The macroscopic behavior of dense suspensions of neutrally buoyant spheres in turbulent plane channel flow is examined. We show that particles larger than the smallest turbulence scales cause the suspension to deviate from the continuum limit in which its dynamics is well describ
...
The gravity-driven motion of rigid particles in a viscous fluid is relevant in many natural and industrial processes, yet this has mainly been investigated for spherical particles. We therefore consider the sedimentation of non-spherical (spheroidal) isolated and particle pairs i
...
Dense suspensions are usually investigated in the laminar limit where inertial effects are insignificant. When the flow rate is high enough, i.e. at high Reynolds number, the flow may become turbulent and the interaction between solid and liquid phases modifies the turbulence we
...