DV

D. Varjas

16 records found

Crystalline symmetries have played a central role in the identification and understanding of quantum materials. Here we investigate whether an amorphous analogue of a well known three-dimensional strong topological insulator has topological properties in the solid state. We show ...
We derive a Z4 topological invariant that extends beyond symmetry eigenvalues and Wilson loops and classifies two-dimensional insulators with a C4T symmetry. To formulate this invariant, we consider an irreducible Brillouin zone and constrain the spectrum of the open Wilson lines ...
Quantum systems are often described by parameter-dependent Hamiltonians. Points in parameter space where two levels are degenerate can carry a topological charge. Here we theoretically study an interacting two-spin system where the degeneracy points form a nodal loop or a nodal s ...
Platforms for creating Majorana quasiparticles rely on superconductivity and breaking of time-reversal symmetry. By studying continuous deformations to known trivial states, we find that the relationship between superconducting pairing and time reversal breaking imposes rigorous ...
Protection of topological surface states by reflection symmetry breaks down when the boundary of the sample is misaligned with one of the high symmetry planes of the crystal. We demonstrate that this limitation is removed in amorphous topological materials, where the Hamiltonian ...
We present an algorithm to determine topological invariants of inhomogeneous systems, such as alloys, disordered crystals, or amorphous systems. Based on the kernel polynomial method, our algorithm allows us to study samples with more than 107 degrees of freedom. Our method enabl ...
Amorphous solids remain outside of the classification and systematic discovery of new topological materials, partially due to the lack of realistic models that are analytically tractable. Here we introduce the topological Weaire-Thorpe class of models, which are defined on amorph ...
With the lockdowns caused by the COVID-19 pandemic, researchers turn to online conferencing. While posing new challenges, this format also brings multiple advantages. We argue that virtual conferences will become part of our regular scientific communication and invite community m ...
Dirac-like Hamiltonians, linear in momentum k, describe the low-energy physics of a large set of novel materials, including graphene, topological insulators, and Weyl fermions. We show here that the inclusion of a minimal k2 Wilson's mass correction improves the models and allows ...
We construct a two-dimensional higher-order topological phase protected by a quasicrystalline eightfold rotation symmetry. Our tight-binding model describes a superconductor on the Ammann-Beenker tiling hosting localized Majorana zero modes at the corners of an octagonal sample. ...
We study the influence of sample termination on the electronic properties of the novel quantum spin Hall insulator monolayer 1T′-WTe2. For this purpose, we construct an accurate, minimal four-orbital tight-binding model with spin-orbit coupling by employing a combination of densi ...

Qsymm

Algorithmic symmetry finding and symmetric Hamiltonian generation

Symmetry is a guiding principle in physics that allows us to generalize conclusions between many physical systems. In the ongoing search for new topological phases of matter, symmetry plays a crucial role by protecting topological phases. We address two converse questions relevan ...
Low dimensional semiconducting structures with strong spin-orbit interaction (SOI) and induced superconductivity attracted great interest in the search for topological superconductors. Both the strong SOI and hard superconducting gap are directly related to the topological protec ...
Lattice translation symmetry gives rise to a large class of "weak" topological insulators (TIs), characterized by translation-protected gapless surface states and dislocation bound states. In this work we show that space group symmetries lead to constraints on the weak topologica ...
Recent experiments on Majorana fermions in semiconductor nanowires [S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen, J. Nygård, P. Krogstrup, and C. M. Marcus, Nature (London) 531, 206 (2016)NATUAS0028-083610.1038/nature17162] revealed a surprisingly l ...
The polarization of a material and its response to applied electric and magnetic fields are key solid-state properties with a long history in insulators, although a satisfactory theory required new concepts such as Berry-phase gauge fields. In metals, quantities such as static po ...