CS
C.J. Simao Ferreira
191 records found
1
...
The airfoil DU91-W2-150 was investigated in the Low Speed Low Turbulence Tunnel at the Delft University of Technology to study unsteady aerodynamics. This experimental study tested the airfoil under a wide range of angles of attack (AoA) from 0° to 310° at three Reynolds numbers
...
This study investigates the potential of regenerative wind farming using multirotor systems equipped with paired multirotor-sized wings, termed atmospheric boundary layer control (ABL-control) devices, positioned in the near-wake region of the multirotor. These ABL-control device
...
Large wind turbines face more intricate atmospheric conditions with turbulent coherent structures sized similarly to the rotor diameter, posing loading challenges. The present study assesses twelve distinct wind fields using the Large Eddy Simulations (LES) and International Elec
...
Numerical simulations of wind farms consisting of innovative wind energy harvesting systems are conducted. The novel wind harvesting system is designed to generate strong lift (vertical force) with lifting-devices. It is demonstrated that the tip-vortices generated by these lifti
...
To investigate the effect of force distributions of each turbine component on the power performance of the Darrieus–Savonius combined vertical axis wind turbine (hybrid VAWT), the hybrid VAWT is modeled as idealized turbine under various force distributions. The goal of idealizat
...
The topic of vortex-induced vibrations on a wind turbine blade has recently gained much attention due to its growing size and flexibility. To address this concern, a wind tunnel test was conducted to study the forced plunging and surging motion of a NACA0021 airfoil at 90° angle
...
In contemporary wind farm design, the primary focus has traditionally been on reducing wake interference to optimize energy capture from horizontal wind flows. However, with the scaling up of wind farms, their interaction with the Atmospheric Boundary Layer (ABL) evolves, making
...
This article presents a comparison study of different aerodynamic models for an X-shaped vertical-axis wind turbine and offers insight into the 3D aerodynamics of this rotor at fixed pitch offsets. The study compares six different numerical models: a double-multiple streamtube (D
...
The Horizon 2020 European Commission-funded project - X-ROTOR - proposes a radical rethink of the traditional vertical-axis wind turbine geometry. The X-Rotor vertical axis wind turbine relies on blade-tip mounted rotors, referred to as secondary rotors, for power generation and
...
Hybrid computational solvers that integrate Eulerian and Lagrangian methods are emerging as powerful tools in computational fluid dynamics, particularly for external aerodynamics. These solvers rely on the strengths of both approaches: Eulerian methods efficiently handle boundary
...
Operating a conventional propeller at negative thrust results in the operation of positively cambered blade sections at negative angles of attack, leading to flow separation. Consequently, accurately simulating the aerodynamics of propellers operating at negative thrust poses a g
...
This study validates a correction model, which extends standard blade element momentum theory to swept blades and, by doing so, enhances wind turbine simulation predictability for these advanced geometries. This correction model addresses limitations in BEM algorithms, accommodat
...
With the growing trend towards larger wind turbine rotor diameters, the impact of wind shear on rotor performance and loads becomes increasingly significant. Atmospheric stability strongly influences wind shear, leading to higher wind shear under stable atmospheric conditions. In
...
This study presents results from a wind tunnel experiment on a three-bladed horizontal axis wind turbine. The model turbine is a scaled-down version of the IEA 15 MW reference wind turbine, preserving the non-dimensional thrust distribution along the blade.
Flow fields w ...
Flow fields w ...
The aim of this study was to assess the accuracy of predicting the aerodynamic loads and investigate the aerodynamic wake characteristics of a vertical axis wind turbine (VAWT) rotor using a simplified two-dimensional numerical rotor model and an advanced numerical approach – the
...
Recent studies have revealed the large potential of vertical-axis wind turbines (VAWTs) for high-energy-density wind farms due to their favorable wake recovery characteristics. The present study provides an experimental demonstration and proof-of-concept for the wake recovery mec
...
Vertical-axis wind turbines (VAWTs), particularly in offshore wind farms, are gaining attention for their capacity to potentially enhance wake recovery and increase the power density of wind farms. Previous research on VAWT wake control strategies have demonstrated that the pitch
...
This study investigates the near-wake aerodynamics of actuator disks (multirotor devices) paired with lift-generating devices (rotor-sized wings, dubbed ABL-control devices). These rotor-sized wings generate vortical structures that enhance the vertical momentum flux from above t
...
This study presents findings from a wind tunnel experiment investigating a model wind turbine equipped with aft-swept blades. Utilising particle image velocimetry, velocity fields were measured at multiple radial stations. These allow the derivation of blade-level aerodynamic par
...
The past few decades have witnessed a growing popularity in Eulerian–Lagrangian solvers due to their significant potential for simulating aerodynamic flows, particularly in cases involving strong body–vortex interactions. In this hybrid approach, the two component solvers are mut
...