C.P.A. Wapenaar
619 records found
1
...
The Marchenko algorithm can suppress the disturbing effects of internal multiples that are present in seismic reflection data. To achieve this, a set of coupled equations with four unknowns is solved. These coupled equations are separated into a set of two equations with two unkn
...
Recently, the focus of reflection seismologists has shifted to applications where a high-resolution image of the subsurface is required. Least-Squares Reverse-Time Migration (LSRTM) is a common tool used to compute such images. Still, its high computational costs have led seismol
...
The Marchenko method is capable of estimating Green’s functions between the surface of the Earth and arbitrary locations in the subsurface. These Green’s functions are used to redatum wavefields to a deeper level in the subsurface. The Marchenko method enables the isolation of th
...
Waves in space-dependent and time-dependent materials
A systematic comparison
Waves in space-dependent and in time-dependent materials obey similar wave equations, with interchanged time- and space-coordinates. However, since the causality conditions are the same in both types of material (i.e., without interchangement of time- and space-coordinates), the
...
Coda-wave interferometry employs the sensitivity of multiply scattered waves to detect minute changes of the propagation velocity. In most applications the underlying assumption is that the velocity changes take place approximately uniformly in a large region. Time-lapse seismic
...
Geophysical monitoring of subsurface reservoirs relies on detecting small changes in the seismic response between a baseline and monitor study. However, internal multiples, related to the over- and underburden, can obstruct the view of the target response, hence complicating the
...
Minimum-phase properties are well-understood for scalar functions where they can be used as physical constraint for phase reconstruction. Existing scalar applications of the latter in geophysics include, for example the reconstruction of transmission from acoustic reflection data
...
Green’s functions and propagator matrices are both solutions of the wave equation, but whereas Green’s functions obey a causality condition in time (G = 0 for t < 0), propagator matrices obey a boundary condition in space. Marchenko-type focusing functions focus a wave field in s
...
Marchenko-type integrals typically relate so-called focusing functions and Green's functions via the reflection response measured on the open surface of a volume of interest. Originating from one dimensional inverse scattering theory, the extension to two and three dimensions set
...
Reservoir simulations for subsurface processes play an important role in successful deployment of geoscience applications such as geothermal energy extraction and geo-storage of fluids. These simulations provide time-lapse dynamics of the coupled poromechanical processes within t
...
Erratum
Wave-field representations with Green's functions, propagator matrices, and Marchenko-type focusing functions (J. Acoust. Soc. Am. (2022) 151 (587-608) DOI: 10.1121/10.0009236)
For the elastodynamic wave equation discussed in Appendix A.4 in Ref. 1, the expressions for matrices ∼L 6 1 and ∼L 6 2 in Eqs. (A32) and (A33) must be multiplied by 61. In other words, the signs of ∼L _
1and ∼L _
2have to be cha
...
Previous studies indicate that scattering may pose a trade-off for the performance of seismic interferometry (SI) applications for retrieving body-wave reflections of a target reflector. While it has been demonstrated that a higher scattering strength of the overburden improves t
...
Many seismic imaging methods use wavefield extrapolation operators to redatum sources and receivers from the surface into the subsurface. We discuss wavefield extrapolation operators that account for internal multiple reflections, in particular propagator matrices, transfer matri
...
The data-driven Marchenko method is able to redatum wavefields to arbitrary locations in the subsurface, and can, therefore, be used to isolate zones of specific interest. This creates a new reflection response of the target zone without interference from over- or underburden ref
...
Least-squares reverse-time migration (LSRTM) is a method that seismologists utilize to compute a high-resolution subsurface image. Nevertheless, LSRTM is a computationally demanding problem. One way to reduce the computational costs of the LSRTM is to choose a small region of int
...
3D Marchenko applications
Implementation and examples
We implement the 3D Marchenko equations to retrieve responses to virtual sources inside the subsurface. For this, we require reflection data at the surface of the Earth that contain no free-surface multiples and are densely sampled in space. The required 3D reflection data volume
...
On the Multi-component Information of DAS for Near-Surface Seismic
A Pilot Field Experiment in the Groningen Area
In a surface-seismic setting, Distributed Acoustic Sensing (DAS) is still not a widely adopted method for near-surface characterisation, especially for reflection seismic imaging, despite the dense spatial sampling it provides over long distances. This is mainly due to the decrea
...
Standard Marchenko redatuming and imaging schemes neglect evanescent waves and are based on the assumption that decomposition into downgoing and upgoing waves is possible in the subsurface. Recently we have shown that propagator matrices, which circumvent these assumptions, can b
...
Green’s functions in an unknown elastic layered medium can be retrieved from single-sided reflection data by solving a Marchenko equation. This methodology requires a priori knowledge of all forward-scattered (non-converted and converted) waveforms. Moreover, the medium should sa
...
Seismic interferometry (SI) is a method that retrieves new seismic traces from the cross-correlation of existing traces, where one of the receivers acts as a virtual seismic source whose response is retrieved at other receivers. When using sources only at the surface, and so-call
...