LF

L.S.M. Farinacci

5 records found

The nuclear spin, being much more isolated from the environment than its electronic counterpart, presents opportunities for quantum experiments with prolonged coherence times. Electron spin resonance (ESR) combined with scanning tunnelling microscopy (STM) provides a bottom-up pl ...
Differential conductance spectroscopy performed in the high bias regime - in which the applied voltage exceeds the sample work function - is a suboptimal measure of the local density of states due to the effects of the changing tunnel barrier. Additionally, the large applied volt ...
Atomically engineered artificial lattices are a useful tool for simulating complex quantum phenomena, but have so far been limited to the study of Hamiltonians where electron-electron interactions do not play a role. However, it is precisely the regime in which these interactions ...
Historically, electron spin resonance (ESR) has provided excellent insight into the electronic, magnetic, and chemical structure of samples hosting spin centers. In particular, the hyperfine interaction between the electron and the nuclear spins yields valuable structural informa ...
Full insight into the dynamics of a coupled quantum system depends on the ability to follow the effect of a local excitation in real-time. Here, we trace the free coherent evolution of a pair of coupled atomic spins by means of scanning tunneling microscopy. Rather than using mic ...