Circular Image

39 records found

SEQUEL

Semi-Supervised Preference-based RL with Query Synthesis via Latent Interpolation

Preference-based reinforcement learning (RL) poses as a recent research direction in robot learning, by allowing humans to teach robots through preferences on pairs of desired behaviours. Nonetheless, to obtain realistic robot policies, an arbitrarily large number of queries is r ...
Safety is crucial for autonomous drones to operate close to humans. Besides avoiding unwanted or harmful contact, people should also perceive the drone as safe. Existing safe motion planning approaches for autonomous robots, such as drones, have primarily focused on ensuring phys ...
Rearranging objects is an essential skill for robots. To quickly teach robots new rearrangements tasks, we would like to generate training scenarios from high-level specifications that define the relative placement of objects for the task at hand. Ideally, to guide the robot's le ...
Ensuring safety in real-world robotic systems is often challenging due to unmodeled disturbances and noisy sensors. To account for such stochastic uncertainties, many robotic systems leverage probabilistic state estimators such as Kalman filters to obtain a robot's belief, i.e. a ...
In this article, we address the task and safety performance of data-driven model predictive controllers (DD-MPC) for systems with complex dynamics, i.e., temporally or spatially varying dynamics that may also be discontinuous. The three challenges we focus on are the accuracy of ...
Practical implementations of deep reinforcement learning (deep RL) have been challenging due to an amplitude of factors, such as designing reward functions that cover every possible interaction. To address the heavy burden of robot reward engineering, we aim to leverage subjectiv ...

SpaTiaL

Monitoring and planning of robotic tasks using spatio-temporal logic specifications

Many tasks require robots to manipulate objects while satisfying a complex interplay of spatial and temporal constraints. For instance, a table setting robot first needs to place a mug and then fill it with coffee, while satisfying spatial relations such as forks need to placed l ...
In many real-world robotic scenarios, we cannot assume exact knowledge about a robot’s state due to unmodeled dynamics or noisy sensors. Planning in belief space addresses this problem by tightly coupling perception and planning modules to obtain trajectories that take into accou ...
Hidden traffic participants pose a great challenge for autonomous vehicles. Previous methods typically do not use previous obser-vations, leading to over-conservative behavior. In this paper, we present a continuation of our work on reasoning about objects out-side the current se ...

Foresee the Unseen

Sequential Reasoning about Hidden Obstacles for Safe Driving

Safe driving requires autonomous vehicles to anticipate potential hidden traffic participants and other unseen objects, such as a cyclist hidden behind a large vehicle, or an object on the road hidden behind a building. Existing methods are usually unable to consider all possible ...

Correct Me If I'm Wrong

Using Non-Experts to Repair Reinforcement Learning Policies

Reinforcement learning has shown great potential for learning sequential decision-making tasks. Yet, it is difficult to anticipate all possible real-world scenarios during training, causing robots to inevitably fail in the long run. Many of these failures are due to variations in ...
Runtime enforcement refers to the theories, techniques, and tools for enforcing correct behavior with respect to a formal specification of systems at runtime. In this paper, we are interested in techniques for constructing runtime enforcers for the concrete application domain of ...
Despite the successes of deep reinforcement learning (RL), it is still challenging to obtain safe policies. Formal verification approaches ensure safety at all times, but usually overly restrict the agent's behaviors, since they assume adversarial behavior of the environment. Ins ...
Visual planning approaches have shown great success for decision making tasks with no explicit model of the state space. Learning a suitable representation and constructing a latent space where planning can be performed allows non-experts to setup and plan motions by just providi ...
Safe motion planning for autonomous vehicles is a challenging task, since the exact future motion of other traffic participant is usually unknown. In this article, we present a verification technique ensuring that autonomous vehicles do not cause collisions by using fail-safe tra ...
In this paper, we address the safety of data-driven control for contact-rich manipulation. We propose to restrict the controller's action space to keep the system in a set of safe states. In the absence of an analytical model, we show how Gaussian Processes (GP) can be used to ap ...
Adaptive cruise control is one of the most common comfort features of road vehicles. Despite its large market penetration, current systems are not safe in all driving conditions and require supervision by human drivers. While several previous works have proposed solutions for saf ...