SG
S. Ganapathy
5 records found
1
Voltage Imaging with Engineered Proton-Pumping Rhodopsins
Insights from the Proton Transfer Pathway
Voltage imaging using genetically encoded voltage indicators (GEVIs) has taken the field of neuroscience by storm in the past decade. Its ability to create subcellular and network level readouts of electrical dynamics depends critically on the kinetics of the response to voltage
...
Genetically encoded voltage indicators, particularly those based on microbial rhodopsins, are gaining traction in neuroscience as fluorescent sensors for imaging voltage dynamics with high-spatiotemporal precision. Here we establish a novel genetically encoded voltage indicator c
...
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. Th
...
Voltage imaging and optogenetics offer new routes to optically detect and influence neural dynamics. Optimized hardware is necessary to make the most of these new techniques. Here we present the Octoscope, a versatile, multimodal device for all-optical electrophysiology. We illus
...
Total internal reflection fluorescence (TIRF) microscopy is an important imaging tool for the investigation of biological structures, especially the study on cellular events near the plasma membrane. Imaging at cryogenic temperatures not only enables observing structures in a nea
...