AR

A. Raimondo

13 records found

This paper presents a numerical approach for investigating fatigue delamination propagation in composite stiffened panels loaded in compression in the post-buckling field. These components are widely utilized in aerospace structures due to their lightweight and high-strength prop ...
In this research, conduction welded C-struts, part of a thermoplastic composite fuselage designed and manufactured in the framework of the Clean Sky 2 STUNNING project, are investigated. Five specimens made of two C-section profiles are manufactured and welded using conduction we ...
This study aims at better understanding the damage tolerance of stiffened composite panels subjected to fatigue loads in the post-buckling regime. Ten single-stringer hat-stiffened specimens with an initial delamination between the skin and the stringer foot were manufactured, an ...
In this paper, a comparison between six finite element models of a representative wing structural component performed in the context of Optimised Design for Inspection (ODIN) project of the European Cooperation in Science and Technology (COST) is presented. Six partners from six ...
This paper evaluates the capabilities of the recently developed CF20 cohesive fatigue model, which can predict crack initiation as well as the rates of crack propagation by relying on intrinsic relationships between a stress-life diagram and its corresponding Paris law. The model ...
The standard experimental procedures for determining the interlaminar fracture toughness are designed for delamination propagation in unidirectional specimens. However, in aerospace structural components, delamination usually occurs between plies at different orientations resulti ...
The fatigue damage tolerance of a composite stiffened structure in post-buckling conditions is experimentally investigated in this work. Single-stringer specimens with an initial delamination, artificially created during the manufacturing process, are tested under cyclic compress ...
The fatigue life prediction of post-buckled composite structures represents still an unresolved issue due to the complexity of the phenomenon and the high costs of experimental testing. In this paper, a novel numerical approach, called “Min-Max Load Approach”, is used to analyze ...
In this work, an approach based on the Virtual Crack Closure Technique, included in the commercial finite element code ABAQUS, is adopted to study the propagation of delamination in composite structures under quasi-static and fatigue loads. The methodology, originally capable of ...
An approach based on the cohesive zone model for analyzing delamination in composite laminates under cyclic fatigue loading is presented. The proposed technique, called “min-max load approach,” is able to dynamically capture the local stress ratio during the progression of delami ...
An approach based on the cohesive zone model for analyzing fatigue-driven delamination in composite structures under cyclic loading is presented. The proposed technique, called “Min-Max Load Approach”, is able to dynamically capture the local stress ratio during the evolution of ...
This paper focuses on a novel numerical formulation based on cohesive elements and S-N diagram to simulate fatigue-driven delamination in composite laminates. The constitutive model adopts a two-parameters heuristic equation, which coefficients are evaluated using an idealization ...
Buckling is a critical failure phenomenon for structures, and represents a threat for thin shells subjected to compressive forces. The global buckling load, for a conical structure, depends on the geometry and material properties of the shell, on the stacking sequence, on the typ ...