MA

Mariano Andrés Arbelo

22 records found

Authored

This paper presents a novel damage mechanics based failure model enabling the prediction of low cycle fatigue life and residual strength of isotropic structures under multiaxial loading. The approach herein proposed does not discretize every load cycle but instead takes an env ...

Considering the design of aerospace structures, an experimental campaign is essential for validating the sizing methodology and margins of safety. Particularly for buckling-critical cylindrical shells, the traditional buckling test could lead the specimen to permanent damage. The ...
Buckling is a critical failure phenomenon for structures, and represents a threat for thin shells subjected to compressive forces. The global buckling load, for a conical structure, depends on the geometry and material properties of the shell, on the stacking sequence, on the typ ...
A semi-analytical model for the non-linear analysis of simply supported, unstiffened laminated composite cylinders and cones using the Ritz method and the Classical Laminated Plate Theory is proposed. A matrix notation is used to formulate the problem using Donnell's and Sanders' ...
With the evolution of composite materials and moreover of the manufacturing process of large composite structures, a new window of possibilities is opened from the optimization point of view. Currently, one has great materials and reliable manufacturing processes than can be used ...

Nondestructive methods, to calculate the buckling load of imperfection sensitive thin-walled structures, such as large-scale aerospace structures, are one of the most important techniques for the evaluation of new structures and validation of numerical models. The vibration co ...

Thin-walled cylindrical composite shell structures can be applied in space applications, looking for lighter and cheaper launcher transport system. These structures are prone to buckling under axial compression and may exhibit sensitivity to geometrical imperfections. Today the d ...
Since the development of the first theories to predict the buckling induced by axial compression in shells sensitive to imperfections, a significant discrepancy between theoretical and experimental results has been observed. Donnell and Koiter are among the first authors demonstr ...

Nondestructive methods, to calculate the buckling load of imperfection sensitive thin-walled structures, are one of the most important techniques for the validation of new structures and numerical models of large scale aerospace structures. The vibration correlation technique ...

The importance of taking into account geometric imperfections for cylindrical and conical thin-walled structures prone to buckling had been already recognized by the first authors dealing with new formulations. Nowadays, the analysts still use empirically based lower-bound met ...

Semi-analytical models for the linear buckling analysis of unstiffened laminated composite cylinders and cones with flexible boundary conditions are presented. The Classical Laminated Plate Theory and the First-order Shear Deformation Theory are used in conjunction with the Donne ...
The importance of taking into account geometric imperfections for cylindrical and conical thin-walled structures in buckling had been already recognized a long time ago. Nowadays, the designers still use empirically based lower-bound methods such as the NASA SP-8007 guideline to ...

Imperfection sensitive structures such as unstiffened or skin-dominant shell structures are commonly used for aeronautic and aerospace applications. Cylindrical shells are dominating satellite launcher structures and a reliable methodology to calculate their behaviour in the e ...

Space and aircraft industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite space and aerospace structures contributes to this aim, however, it requires accurate and experimentally validated s ...

This paper presents the application of the Ritz method for the analysis of laminated composite cylinders and cones using the classical laminated plate theory (CLPT) and the first shear deformation theory (FSDT). The Donnell and Sander kinematic approximations are investigated ...

The Vibration Correlation Technique (VCT) is a nondestructive experimental method that can be used for the estimation of realistic boundary conditions and to improve the correlation of numerical models used to estimate the buckling load of shell structures. This paper presents in ...

Currently, imperfection sensitive shell structures prone to buckling are designed according to the NASA SP-8007 guideline, from 1968, using its conservative lower bound curve. In this guideline the structural behavior of composite materials is not appropriately considered, sin ...

The important role of geometric imperfections on the decrease of the buckling load for thin-walled cylinders had been recognized already by the first authors investigating the theoretical approaches on this topic. However, there are currently no closed-form solutions to take i ...

Nondestructive experimental methods to calculate the buckling load of imperfection sensitive thin-walled structures are one of the most important techniques for the validation of new structures and numerical models of large scale aerospace structures. Vibration correlation tec ...

Some of the knock-down factors applied in design of rocket launcher structures are based on design recommendations which rely on lower-bound curves from experimental data. The best known example is the NASA guideline SP 8007, published in 1965 and revised in 1968, which is app ...