F.A. Oliehoek
79 records found
1
In this volume, we are happy present the post-proceedings of BNAIC/BeNeLearn 2023, the joint conference on Artificial Intelligence and Machine Learning in the BeNeLux, which took place at TU Delft. It is the main regional conference on these topics and has a long tradition: in 20
...
Model-based reinforcement learning (MBRL) has drawn considerable interest in recent years, given its promise to improve sample efficiency. Moreover, when using deep-learned models, it is possible to learn compact and generalizable models from data. In this work, we study MuZero,
...
Policy Space Response Oracles
A Survey
Game theory provides a mathematical way to study the interaction between multiple decision makers. However, classical game-theoretic analysis is limited in scalability due to the large number of strategies, precluding direct application to more complex scenarios. This survey prov
...
Many methods for Model-based Reinforcement learning (MBRL) in Markov decision processes (MDPs) provide guarantees for both the accuracy of the model they can deliver and the learning efficiency. At the same time, state abstraction techniques allow for a reduction of the size of a
...
Teacher-apprentices RL (TARL)
Leveraging complex policy distribution through generative adversarial hypernetwork in reinforcement learning
Typically, a Reinforcement Learning (RL) algorithm focuses in learning a single deployable policy as the end product. Depending on the initialization methods and seed randomization, learning a single policy could possibly leads to convergence to different local optima across diff
...
Reinforcement learning agents may sometimes develop habits that are effective
only when specific policies are followed. After an initial exploration phase in which
agents try out different actions, they eventually converge toward a particular policy.
When this occurs, ...
only when specific policies are followed. After an initial exploration phase in which
agents try out different actions, they eventually converge toward a particular policy.
When this occurs, ...
One of the main challenges of multi-agent learning lies in establishing convergence of the algorithms, as, in general, a collection of individual, self-serving agents is not guaranteed to converge with their joint policy, when learning concurrently. This is in stark contrast to m
...
We present a review that unifies decision-support methods for exploring the solutions produced by multi-objective optimization (MOO) algorithms. As MOO is applied to solve diverse problems, approaches for analyzing the trade-offs offered by MOO algorithms are scattered across fie
...
One of the main challenges of multi-agent learning lies in establishing convergence of the algorithms, as, in general, a collection of individual, self-serving agents is not guaranteed to converge with their joint policy, when learning concurrently. This is in stark contrast to m
...
This work investigates formal generalization error bounds that apply to support vector machines (SVMs) in realizable and agnostic learning problems. We focus on recently observed parallels between probably approximately correct (PAC)-learning bounds, such as compression and compl
...
Model-based reinforcement learning methods are promising since they can increase sample efficiency while simultaneously improving generalizability. Learning can also be made more efficient through state abstraction, which delivers more compact models. Model-based reinforcement le
...
Inferring reward functions from demonstrations and pairwise preferences are auspicious approaches for aligning Reinforcement Learning (RL) agents with human intentions. However, state-of-the art methods typically focus on learning a single reward model, thus rendering it difficul
...
Learning effective policies for real-world problems is still an open challenge for the field of reinforcement learning (RL). The main limitation being the amount of data needed and the pace at which that data can be obtained. In this paper, we study how to build lightweight simul
...
This paper introduces Multi-Agent MDP Homomorphic Networks, a class of networks that allows distributed execution using only local information, yet is able to share experience between global symmetries in the joint state-action space of cooperative multi-agent systems. In coopera
...
Influence-Augmented Local Simulators
A Scalable Solution for Fast Deep RL in Large Networked Systems
Learning effective policies for real-world problems is still an open challenge for the field of reinforcement learning (RL). The main limitation being the amount of data needed and the pace at which that data can be obtained. In this paper, we study how to build lightweight simul
...
BADDr
Bayes-Adaptive Deep Dropout RL for POMDPs
While reinforcement learning (RL) has made great advances in scalability, exploration and partial observability are still active research topics. In contrast, Bayesian RL (BRL) provides a principled answer to both state estimation and the exploration-exploitation trade-off, but s
...
Centaurs are half-human, half-AI decision-makers where the AI's goal is to complement the human. To do so, the AI must be able to recognize the goals and constraints of the human and have the means to help them. We present a novel formulation of the interaction between the human
...
Learning to cooperate with other agents is challenging when those agents also possess the ability to adapt to our own behavior. Practical and theoretical approaches to learning in cooperative settings typically assume that other agents' behaviors are stationary, or else make very
...
Policy gradient methods have become one of the most popular classes of algorithms for multi-agent reinforcement learning. A key challenge, however, that is not addressed by many of these methods is multi-agent credit assignment: assessing an agent’s contribution to the overall pe
...