GN

5 records found

Wind farms suffer from so-called wake effects: when turbines are located in the wind shadows of other turbines, their power output is substantially reduced. These losses can be partially mitigated via actively changing the yaw from the individually optimal direction. Most existin ...
Sequential decision-making under uncertainty is an important branch of artificial intelligence research with a plethora of real-life applications. In this thesis, we generalize two fundamental properties of the decision-making process. First, we show that the theory on planning ...
Reinforcement learning (RL), like any on-line learning method, inevitably faces the exploration-exploitation dilemma. When a learning algorithm requires as few data samples as possible, it is called sample efficient. The design of sample-efficient algorithms is an important area ...
Reinforcement learning requires exploration, leading to repeated execution of sub-optimal actions. Naive exploration techniques address this problem by changing gradually from exploration to exploitation. This approach employs a wide search resulting in exhaustive exploration and ...
Infinite-horizon non-stationary Markov decision processes provide a general framework to model many real-life decision-making problems, e.g., planning equipment maintenance. Unfortunately, these problems are notoriously difficult to solve, due to their infinite dimensionality. Of ...