Dynamical Two-Mode Squeezing of Thermal Fluctuations in a Cavity Optomechanical System

More Info
expand_more

Abstract

We report the experimental observation of two-mode squeezing in the oscillation quadratures of a thermal micro-oscillator. This effect is obtained by parametric modulation of the optical spring in a cavity optomechanical system. In addition to stationary variance measurements, we describe the dynamic behavior in the regime of pulsed parametric excitation, showing an enhanced squeezing effect surpassing the stationary 3 dB limit. While the present experiment is in the classical regime, our technique can be exploited to produce entangled, macroscopic quantum optomechanical modes.