Investigation of Potting Compounds on Thermal-Fatigue properties of Solder Interconnects

More Info
expand_more

Abstract

The objective of this article is to investigate the thermal-fatigue properties of a commercially available lead-free solder alloy (SnBiAgCu) under the use of different types of potting compounds. Solder alloys with lower silver content are expected to substitute the conventional solder alloys SAC305 (Sn-3.0Ag-0.5Cu). First, the tensile behavior and creep behavior of the SnBiAgCu solder alloys were studied at three temperatures (25, 75, 125). Results show that this type of solder alloys presented higher tensile strength and creep deformation endurance than conventional SAC305 solder alloys. Second, a dynamic mechanical analysis was performed to get the storage modulus and glass transition temperature of three types of potting compounds, which were used in the thermal-fatigue simulation. Third, the experimentally determined material data was used for the averaged strain energy density increment calculated by the finite element method. This simulation approach was selected as damage metrics to evaluate solder interconnect reliability under different combinations of materials. It is found that the application of potting compounds will increase strain energy density significantly when compared with the strain energy density calculated without potting compound, which means that potting compounds will deteriorate the thermal-fatigue reliability of solder interconnects. These accurate data-driven simulation models can in the future form the basis for compact digital twins for predicting useful remaining lifetime.

Files

Investigation_of_Potting_Compo... (pdf)
(pdf | 3.95 Mb)
- Embargo expired in 09-06-2023
Unknown license