SG

Shota Gugushvili

8 records found

We obtain rates of contraction of posterior distributions in inverse problems with discrete observations. In a general setting of smoothness scales we derive abstract results for general priors, with contraction rates determined by discrete Galerkin approximation. The rate depend ...
In this work, we study the problem of learning the volatility under market microstructure noise. Specifically, we consider noisy discrete time observations from a stochastic differential equation and develop a novel computational method to learn the diffusion coefficient of the e ...
We consider a nonparametric Bayesian approach to estimate the diffusion coefficient of a stochastic differential equation given discrete time observations over a fixed time interval. As a prior on the diffusion coefficient, we employ a histogram-type prior with piecewise constant ...
According to both domain expert knowledge and empirical evidence, wavelet coefficients of real signals tend to exhibit clustering patterns, in that they contain connected regions of coefficients of similar magnitude (large or small). A wavelet de-noising approach that takes into ...

Decompounding discrete distributions

A nonparametric Bayesian approach

Suppose that a compound Poisson process is observed discretely in time and assume that its jump distribution is supported on the set of natural numbers. In this paper we propose a nonparametric Bayesian approach to estimate the intensity of the underlying Poisson process and the ...
Given discrete time observations over a fixed time interval, we study a nonparametric Bayesian approach to estimation of the volatility coefficient of a stochastic differential equation. We postulate a histogram-type prior on the volatility with piecewise constant realisations on ...
Given a sample from a discretely observed compound Poisson process, we consider non-parametric estimation of the density f0 of its jump sizes, as well as of its intensity λ0. We take a Bayesian approach to the problem and specify the prior on f0 as the Dirichlet location mixture ...