Daniel J. Bowen
6 records found
1
Objective: Assessing myocardial perfusion in acute myocardial infarction is important for guiding clinicians in choosing appropriate treatment strategies. Echocardiography can be used due to its direct feedback and bedside nature, but it currently faces image quality issues and an inability to differentiate coronary macro- from micro-circulation. We previously developed an imaging scheme using high frame-rate contrast-enhanced ultrasound (HFR CEUS) with higher order singular value decomposition (HOSVD) that provides dynamic perfusion and vascular flow visualization. In this study, we aim to show the ability of this technique to image perfusion deficits and investigate the potential occurrence of false-positive contrast detection. Methods: We used a porcine model comprising occlusion and release of the left anterior descending coronary artery. During slow contrast agent infusion, the afore-mentioned imaging scheme was used to capture and process the data offline using HOSVD. Results: Fast and slow coronary flow was successfully differentiated, presumably representing the different compartments of the micro-circulation. Low perfusion was seen in the area that was affected, as expected by vascular occlusion. Furthermore, we also imaged coronary flow dynamics before, during and after release of the occlusion, the latter showing hyperemia as expected. A contrast agent destruction test showed that the processed images contained actual contrast signal in the cardiac phases with minimal motion. With larger tissue motion, tissue signal leaked into the contrast-enhanced images. Conclusion: Our results demonstrate the feasibility of HFR CEUS with HOSVD as a viable option for assessing myocardial perfusion. Flow dynamics were resolved, which potentially helped to directly evaluate coronary flow deficits.
@enHigh-frame-rate (HFR) echo-particle image velocimetry (echoPIV) is a promising tool for measuring intracardiac blood flow dynamics. In this study, we investigate the optimal ultrasound contrast agent (UCA: SonoVue) infusion rate and acoustic output to use for HFR echoPIV (PRF = 4900 Hz) in the left ventricle (LV) of patients. Three infusion rates (0.3, 0.6, and 1.2 ml/min) and five acoustic output amplitudes (by varying transmit voltage: 5, 10, 15, 20, and 30 V - corresponding to mechanical indices of 0.01, 0.02, 0.03, 0.04, and 0.06 at 60-mm depth) were tested in 20 patients admitted for symptoms of heart failure. We assess the accuracy of HFR echoPIV against pulsed-wave Doppler acquisitions obtained for mitral inflow and aortic outflow. In terms of image quality, the 1.2-ml/min infusion rate provided the highest contrast-to-background ratio (CBR) (3-dB improvement over 0.3 ml/min). The highest acoustic output tested resulted in the lowest CBR. Increased acoustic output also resulted in increased microbubble disruption. For the echoPIV results, the 1.2-ml/min infusion rate provided the best vector quality and accuracy; mid-range acoustic outputs (corresponding to 15-20-V transmit voltages) provided the best agreement with the pulsed-wave Doppler. Overall, the highest infusion rate (1.2 ml/min) and mid-range acoustic output amplitudes provided the best image quality and echoPIV results.
@enNatural and active shear wave elastography (SWE) are potential ultrasound-based techniques to non-invasively assess myocardial stiffness, which could improve current diagnosis of heart failure. This study aims to bridge the knowledge gap between both techniques and discuss their respective impacts on cardiac stiffness evaluation. We recorded the mechanical waves occurring after aortic and mitral valve closure (AVC, MVC) and those induced by acoustic radiation force throughout the cardiac cycle in four pigs after sternotomy. Natural SWE showed a higher feasibility than active SWE, which is an advantage for clinical application. Median propagation speeds of 2.5–4.0 m/s and 1.6–4.0 m/s were obtained after AVC and MVC, whereas ARF-based median speeds of 0.9–1.2 m/s and 2.1–3.8 m/s were reported for diastole and systole, respectively. The different wave characteristics in both methods, such as the frequency content, complicate the direct comparison of waves. Nevertheless, a good match was found in propagation speeds between natural and active SWE at the moment of valve closure, and the natural waves showed higher propagation speeds than in diastole. Furthermore, the results demonstrated that the natural waves occur in between diastole and systole identified with active SWE, and thus represent a myocardial stiffness in between relaxation and contraction.
@enFor the quantification of myocardial function, myocardial stiffness can potentially be measured non-invasively using shear wave elastography. Clinical diagnosis requires high precision. In 10 healthy volunteers, we studied the reproducibility of the measurement of propagation speeds of shear waves induced by aortic and mitral valve closure (AVC, MVC). Inter-scan was slightly higher but in similar ranges as intra-scan variability (AVC: 0.67 m/s (interquartile range [IQR]: 0.40–0.86 m/s) versus 0.38 m/s (IQR: 0.26–0.68 m/s), MVC: 0.61 m/s (IQR: 0.26–0.94 m/s) versus 0.26 m/s (IQR: 0.15–0.46 m/s)). For AVC, the propagation speeds obtained on different day were not statistically different (p = 0.13). We observed different propagation speeds between 2 systems (AVC: 3.23–4.25 m/s [Zonare ZS3] versus 1.82–4.76 m/s [Philips iE33]), p = 0.04). No statistical difference was observed between observers (AVC: p = 0.35). Our results suggest that measurement inaccuracies dominate the variabilities measured among healthy volunteers. Therefore, measurement precision can be improved by averaging over multiple heartbeats.
@enDifferent shear wave elastography methods have been proposed to measure cardiac material properties. This study compared shear waves naturally generated by aortic and mitral valve closure to those externally induced with an acoustic radiation force throughout the cardiac cycle. The shear wave timing and propagation speeds were measured in four pigs with open-chest recordings. Despite spatial and temporal differences in excitation source, the propagation speeds of the natural shear waves were found to be in the same range as the propagation speeds of the active shear waves. The results also suggested a large inter-beat variability for the natural shear waves.
@en