Md
Marleen de Bruijne
16 records found
1
Registration is a core component of many imaging pipelines. In case of clinical scans, with lower resolution and sometimes substantial motion artifacts, registration can produce poor results. Visual assessment of registration quality in large clinical datasets is inefficient. In
...
Finding automatically multiple lesions in large images is a common problem in medical image analysis. Solving this problem can be challenging if, during optimization, the automated method cannot access information about the location of the lesions nor is given single examples of
...
Scoliosis is a condition defined by an abnormal spinal curvature. For diagnosis and treatment planning of scoliosis, spinal curvature can be estimated using Cobb angles. We propose an automated method for the estimation of Cobb angles from X-ray scans. First, the centerline of th
...
The gap between predicted brain age using magnetic resonance imaging (MRI) and chronological age may serve as a biomarker for early-stage neurodegeneration. However, owing to the lack of large longitudinal studies, it has been challenging to validate this link. We aimed to invest
...
Localization of focal vascular lesions on brain MRI is an important component of research on the etiology of neurological disorders. However, manual annotation of lesions can be challenging, time-consuming and subject to observer bias. Automated detection methods often need voxel
...
The value of hippocampal volume, shape, and texture for 11-year prediction of dementia
A population-based study
Hippocampal volume and shape are known magnetic resonance imaging biomarkers of neurodegeneration. Recently, hippocampal texture has been shown to improve prediction of dementia in patients with mild cognitive impairment, but it is unknown whether texture adds prognostic informat
...
Hydranet
Data augmentation for regression neural networks
Deep learning techniques are often criticized to heavily depend on a large quantity of labeled data. This problem is even more challenging in medical image analysis where the annotator expertise is often scarce. We propose a novel data-augmentation method to regularize neural net
...
Enlarged perivascular spaces in brain MRI
Automated quantification in four regions
Enlarged perivascular spaces (PVS) are structural brain changes visible in MRI, are common in aging, and are considered a reflection of cerebral small vessel disease. As such, assessing the burden of PVS has promise as a brain imaging marker. Visual and manual scoring of PVS is a
...
© 2018 Enlarged perivascular spaces (EPVS) in the brain are an emerging imaging marker for cerebral small vessel disease, and have been shown to be related to increased risk of various neurological diseases, including stroke and dementia. Automated quantification of EPVS would gr
...
© 2018 Enlarged perivascular spaces (EPVS) in the brain are an emerging imaging marker for cerebral small vessel disease, and have been shown to be related to increased risk of various neurological diseases, including stroke and dementia. Automated quantification of EPVS would gr
...
Event-based models (EBM) are a class of disease progression models that can be used to estimate temporal ordering of neuropathological changes from cross-sectional data. Current EBMs only handle scalar biomarkers, such as regional volumes, as inputs. However, regional aggregates
...
Shape analysis is increasingly becoming important to study changes in brain structures in relation to clinical neurological outcomes. This is a challenging task due to the high dimensionality of shape representations and the often limited number of available shapes. Current techn
...
An automated method for registering B-mode ultrasound (US) and magnetic resonance imaging (MRI) of the carotid arteries is proposed. The registration uses geometric features, namely, lumen centerlines and lumen segmentations, which are extracted fully automatically from the image
...
Gp-Unet
Lesion detection from weak labels with a 3D regression network
We propose a novel convolutional neural network for lesion detection from weak labels. Only a single, global label per image - the lesion count - is needed for training. We train a regression network with a fully convolutional architecture combined with a global pooling layer to
...