YS

Yubo Sun

14 records found

To properly control the reaction kinetics and fresh properties evolution in conventional alkali-activated materials (AAMs), a conceptual design of two-stream AAMs has been proposed in this study. This is achieved by dividing the solid and liquid components in AAMs, including blas ...
Municipal solid waste incineration (MSWI) bottom ash, due to its high mineral content, presents great potential as supplementary cementitious material (SCM). Weathering, also known as aging, is a treatment process commonly employed in waste management to minimize the risk of heav ...
To better understand early stiffening of AAS pastes, distinctive microstructural features by varying the silicate modulus (Ms) have been visualized with in-situ microscopy. In addition, the activation reaction was monitored with multiple approaches, while solid and liquid phases ...
Alkali-activated concrete (AAC) is regarded as a promising alternative construction material to reduce the CO2 emission induced by Portland cement (PC) concrete. Due to the diversity in raw materials and complexity of reaction mechanisms, a commonly applied design code ...
Although the application of blast furnace slag and fly ash-based alkali-activated concrete (BFS/FA-AAC) has both economic and environmental benefits, it is limited by the lack of a straightforward mix design method. In this paper, an experiment was conducted to investigate the ef ...
Alkali-activated material (AAM) is developed as a green alternative binder to replace Portland cement (PC) in the construction field. However, the large-scale application with AAM concrete is limited so far, with the insufficient knowledge of rheological behavior being a major ob ...

Future perspectives for alkali‐activated materials

From existing standards to structural applications

The production of cement and concrete contributes significantly to global greenhouse gas emissions. Alkali‐activated concretes (AACs) are a family of existing alternative construction materials that could reduce the current environmental impact of Portland cement (PC) production ...
In this paper, a series of experiments were conducted to systematically and quantitively explore the effects of control factors on the early age properties, i.e., workability and strength of slag and fly ash-based alkali-activated paste (BFS/FA-AAP). The control factors on the wo ...
This study provides a detailed investigation on the reproducibility of two groups of alkali-activated slag (AAS) mixtures, from both fresh properties and strength development perspectives. Three different commercial sodium silicate solutions and one lab-produced silicate activato ...

Fresh and hardened properties of alkali-activated slag concrete

The effect of fly ash as a supplementary precursor

The present study explores the possibility of replacing blast furnace slag (BFS) with coal fly ash (FA) to produce alkali-activated material (AAM) concrete with hybrid precursors. With an increased FA replacement ratio, the reaction kinetics, fresh and hardened properties of AAM ...

Rheology of alkali-activated slag pastes

New insight from microstructural investigations by cryo-SEM

This study aims to interpret the early-stage rheology of alkali-activated slag (AAS) paste from microstructure perspectives. The microstructures visualized by cryogenic scanning electron microscopy (cryo-SEM) revealed the essential distinction between hydroxide and silicate-activ ...
The rapid workability loss of alkali-activated materials (AAM) has been a major obstacle limiting its onsite application. In this study, two conventional SPs (made of polynaphthalene sulfonate (PNS) and lignosulfonate (LS) salts), which have been reported to be effective in some ...
In recent years, the rapid industrialization and urbanization led to the explosive growth of municipal solid waste incineration (MSWI) bottom ashes (BA) production. However, most of them are directly landfilled, which not only brings environmental burden but also results in loss ...
At present, most municipal solid waste incineration (MSWI) bottom ash, as being disposed of as waste, is directly landfilled, raising concern about the environmental issue and potential loss of resources. Given that the natural raw materials used for cement production are being d ...