KN
K. Nanbakhsh
13 records found
1
On the longevity and inherent hermeticity of silicon-ICs
Evaluation of bare-die and PDMS-coated ICs after accelerated aging and implantation studies
Silicon integrated circuits (ICs) are central to the next-generation miniature active neural implants, whether packaged in soft polymers for flexible bioelectronics or implanted as bare die for neural probes. These emerging applications bring the IC closer to the corrosive body e
...
For over five decades, electronic implants have significantly improved the quality of life for millions of patients. With their great potential, substantial advancements have been made in developing new therapeutic devices, particularly in the fields of bioelectronic medicine and
...
Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants
Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimation
Liquid crystal polymer (LCP) has gained wide interest in the electronics industry largely due to its flexibility, stable insulation and dielectric properties and chip integration capabilities. Recently, LCP has also been investigated as a biocompatible substrate for the fabricati
...
Silicone encapsulation of thin-film SiOx, SiOxNy and SiC for modern electronic medical implants
A comparative long-term ageing study
Objective. Ensuring the longevity of implantable devices is critical for their clinical usefulness. This is commonly achieved by hermetically sealing the sensitive electronics in a water impermeable housing, however, this method limits miniaturisation. Alternatively, silicone enc
...
Silicone encapsulation of thin-film SiOx , SiOx Ny and SiC for modern electronic medical implants
A comparative long-term ageing study
Objective. Ensuring the longevity of implantable devices is critical for their clinical usefulness. This is commonly achieved by hermetically sealing the sensitive electronics in a water impermeable housing, however, this method limits miniaturisation. Alternatively, silicone enc
...
Active neural interfaces for bioelectronic medicine are envisioned to be mm-sized. Such miniaturization is at the moment hampered by the available wireless power techniques as well as the large volume the conventional hermetic packaging adds to the implant. Alternatively, conform
...
For mm-sized implants incorporating silicon integrated circuits, ensuring lifetime operation of the chip within the corrosive environment of the body still remains a critical challenge. For the chip's packaging, various polymeric and thin ceramic coatings have been reported, demo
...
In this work, we investigate the insulating performance of an atomic layer deposited (ALD) HfO2 - polymer bilayer for platinum (Pt) metallization. As test vehicles, Pt interdigitated comb structures (IDC) were designed and fabricated on SiO2/Si substrates. The IDCs were first coa
...
To meet the dimensional requirements for bioelectronic medicine, new packaging solutions are needed that could enable small, light-weight and flexible implants. For protecting the implantable electronics against biofluids, recently various atomic layer deposited (ALD) coatings ha
...
Platinum is widely used as the electrode material for implantable devices. Owing to its high biostability and corrosion resistivity, platinum could also be used as the main metallization for tracks in active implants. Towards this goal, in this work we investigate the stability o
...
One key obstacle in employing silicon integrated circuits in flexible implants is ensuring a long-term operation of the chip within the wet corrosive environment of the body. For this reason, throughout the years, various biocompatible insulating materials have been proposed, yet
...
The main goal of bioelectronic medicine is to, one day, replace conventional chemical drugs with miniaturized implants. This way, tiny electrical pulses will be locally delivered to a small group of neurons in order to influence and modify biological functions. Developing such im
...