OA
O.C. Akgün
10 records found
1
On the longevity and inherent hermeticity of silicon-ICs
Evaluation of bare-die and PDMS-coated ICs after accelerated aging and implantation studies
Silicon integrated circuits (ICs) are central to the next-generation miniature active neural implants, whether packaged in soft polymers for flexible bioelectronics or implanted as bare die for neural probes. These emerging applications bring the IC closer to the corrosive body e
...
Dynamic Digital Twin
Diagnosis, Treatment, Prediction, and Prevention of Disease During the Life Course
A digital twin (DT), originally defined as a virtual representation of a physical asset, system, or process, is a new concept in health care. A DT in health care is not a single technology but a domain-adapted multimodal modeling approach incorporating the acquisition, management
...
In this paper, we present the design of a low-voltage, low-power, and small-area time-mode ADC (TM-ADC) for bio-signal sensing applications. The proposed time-mode ADC (TM-ADC) consists of a programmable oversampling ratio (OSR), voltage-controlled ring oscillator (VCRO) based an
...
For mm-sized implants incorporating silicon integrated circuits, ensuring lifetime operation of the chip within the corrosive environment of the body still remains a critical challenge. For the chip's packaging, various polymeric and thin ceramic coatings have been reported, demo
...
This paper presents the design of an ultra-low energy neural network that uses time-mode signal processing). Handwritten digit classification using a single-layer artificial neural network (ANN) with a Softmin-based activation function is described as an implementation example. T
...
One key obstacle in employing silicon integrated circuits in flexible implants is ensuring a long-term operation of the chip within the wet corrosive environment of the body. For this reason, throughout the years, various biocompatible insulating materials have been proposed, yet
...
This paper presents the design of an extremely low-energy biosensing platform that utilizes voltage to time conversion and time-mode signal processing to sense and accommodate electrophysiological biosignals that will be later sent remotely using a simple and low power communicat
...
With the continuous developments in science and engineering, specifically in the fields of electronics and manufacturing, implantable electronic devices have become a reality during the last decades. Implantable electronic devices have hard design constraints: 1) As small size as
...
This paper presents the design of an ultra-low energy, rakeness-based compressed sensing (CS) system that utilizes time-mode (TM) signal processing (TMSP). To realize TM CS operation, the presented implementation makes use of monostable multivibrator based analog-to-time converte
...
This paper presents the design of a low-power asynchronous pipelined time-to-digital converter (AP-TDC) to be employed in a time-domain signal processing system. The presented AP-TDC utilizes two novel concepts, namely time-domain subtraction and absolute value based algorithmic
...