MB

7 records found

Screen-space ambient occlusion (SSAO) shows high efficiency and is widely used in real-time 3D applications. However, using SSAO algorithms in stereo rendering can lead to inconsistencies due to the differences in the screen-space information captured by the left and right eye. T ...
t-distributed Stochastic Neighbour Embedding (t-SNE) has become a standard for exploratory data analysis, as it is capable of revealing clusters even in complex data while requiring minimal user input. While its run-time complexity limited it to small datasets in the past, recent ...
Voxels are a popular choice to encode complex geometry. Their regularity makes updates easy and enables random retrieval of values. The main limitation lies in the poor scaling with respect to resolution. Sparse voxel DAGs (Directed Acyclic Graphs) overcome this hurdle and offer ...

SalientGaze

Saliency-based gaze correction in virtual reality

Eye-tracking with gaze estimation is a key element in many applications, ranging from foveated rendering and user interaction to behavioural analysis and usage metrics. For virtual reality, eye-tracking typically relies on near-eye cameras that are mounted in the VR headset. Such ...
Shadow volumes are a popular technique to compute pixel-accurate hard shadows in 3D scenes. Many variants exist that trade off accuracy and efficiency. In this work, we present an artifact-free, efficient, and easy-to-implement stencil shadow volume method. We compare our method ...

ShutterApp

Spatio-temporal Exposure Control for Videos

A camera's shutter controls the incoming light that is reaching the camera sensor. Different shutters lead to wildly different results, and are often used as a tool in movies for artistic purpose, e.g., they can indirectly control the effect of motion blur. However, a physical ca ...

Voxel DAGs and Multiresolution Hierarchies

From Large-Scale Scenes to Pre-computed Shadows

In this tutorial, we discuss voxel DAGs and multiresolution hierarchies, which are representations that can encode large volumes of data very efficiently. Despite a significant compression ration, an advantage of these structures is that their content can be efficiently accessed ...