Circular Image

40 records found

3-D braided composites are a promising material for manufacturing tubular structures. However, a thorough understanding of their damage mechanisms under torsion is required to maximize their potential applications. The present work constructed a multiscale equivalent model, integ ...
In this study, a novel experimental approach was devised to investigate shear dominant and combined opening-shear planar delamination behaviours in composite laminates subjected to quasi-static out-of-plane loading. The patterns of planar delamination growth were depicted through ...
This paper investigates the fatigue-induced delamination growth in carbon fibre-reinforced polymer (CFRP), considering different fibre orientation combinations. The study explores the application of Artificial Neural Networks (ANN) in the simulation of fatigue delamination behavi ...
Driven by the energy transition and the reduction of carbon emissions, pultruded CFRP plates have emerged as an affordable high performance material for designing wind turbines with larger rotors. To enable the creation of thicker laminates, pre-cured plates are bonded together u ...
For the past few decades, research into fatigue delamination behaviour of Carbon Fibre Reinforced Polymer (CFRP) composites has predominantly relied on standard test methods. These methods typically utilize a uniaxial delamination length to quantify the fatigue delamination proce ...
Laminated pultruded composite plates are gaining interest for use in wind turbine blades due to their excellent structural performance with affordable cost. However, there is limited understanding of their fracture properties. The present work explores the interlaminar fracture b ...
This article presents an overview of methods for analyzing the facture and failure of adhesives. Special attention is given to stress analysis in adhesive bonds, as the difficulty of performing an accurate stress analysis is a major limitation of many failure analysis methods. Th ...
Delamination growth is a key damage mode threatening the structural integrity of fibre reinforced polymer composite structures. To guide design and damage management of composite structures, research efforts have been made to understand delamination behaviours and establish stand ...
In previous literature, a plateau phase in fatigue growth of impact delamination projected area in CFRP was found. Explaining this plateau phase still represents a knowledge gap. In the present work, echo-pulse and through thickness transmission ultrasonic scan inspections were c ...

In-Service Delaminations in FRP Structures under Operational Loading Conditions

Are Current Fracture Testing and Analysis on Coupons Sufficient for Capturing the Essential Effects for Reliable Predictions?

Quasi-static or cyclic loading of an artificial starter crack in unidirectionally fibre-reinforced composite test coupons yields fracture mechanics data—the toughness or strain-energy release rate (labelled G)—for characterising delamination initiation and propagation. Thus far, ...
Impacts on carbon fiber reinforced composites (CFRP) can produce a complex internal damage comprising multiple delaminations, which is hard to detect from visual inspection. This situation is known as barely visible impact damage (BVID). Considering that every airplane faces seve ...
Although several studies have been performed, the compression after impact (CAI) failure of CFRP is still not entirely understood. It is still unclear what sequence of events determines the onset of failure in CAI tests and how the different damage modes are involved in this proc ...
Fibre reinforced polymer composites have found increasing use in aircraft structures. This means that fleet managers need damage assessment tools for such materials, in order to decide on appropriate sustainment strategies. Developing such tools is hindered by the difficulty of g ...
The fatigue behavior of an adhesively bonded joint is of key importance to its long-term structural integrity. However, the complex stress distribution inside a bonded joint does not make it easy to evaluate the fatigue behavior. This chapter discusses the various approaches that ...
In this paper, the effect of interface properties on the compressive failure behavior of 3D woven composites (3DWC) is investigated by incorporating a micromechanics-based multiscale damage model (MMDM). The correlation between the mesoscopic stress of yarns and microscopic stres ...
In this paper, a reliable progressive fatigue damage model (PFDM) for predicting the fatigue life of composite laminates is proposed by combining the normalized fatigue life model, nonlinear residual degradation models and fatigue-improved Puck criterion. To balance the accuracy ...
A novel micromechanics-based multiscale progressive damage model, employing minimal material parameters, is proposed in this paper to simulate the compressive failure behaviours of 3D woven composites (3DWC). The highly realistic constructions of microscopic and mesoscopic repres ...
The effect of ply thickness on the notch sensitivity and bearing properties on carbon fibre reinforced polymer composites and their hybrid laminates with steel foils were studied. Laminates with ply thicknesses of 0.3 mm and 0.03 mm comprising of CFRP and hybrid laminates were ma ...
Using the slow-growth certification approach for damage tolerance of composite aircraft structures has the potential to reduce their weight. Applying this approach requires that damage growth is slow, stable, and predictable. However, currently available methods do not allow for ...
The effect of adhesive thickness on fatigue crack growth in an epoxy film adhesive (FM94) was investigated, using a combination of experiments and numerical modelling. For the range of thicknesses investigated an increased thickness led to an increased crack growth rate. It was f ...