MP

Maurice Poot

13 records found

Feedforward control with task flexibility for MIMO systems is essential to meet the growing demands on throughput and accuracy of high-tech systems. The aim of this paper is to develop an experimentally efficient framework for data-driven tuning of rational feedforward controller ...
The performance of feedforward control depends strongly on its ability to compensate for reproducible disturbances. The aim of this paper is to develop a systematic framework for artificial neural networks (ANN) for feedforward control. The method involves three aspects: a new cr ...

Position-Dependent Motion Feedforward via Gaussian Processes

Applied to Snap and Force Ripple in Semiconductor Equipment

The requirements for high accuracy and throughput in next-generation data-intensive motion systems lead to situations where position-dependent feedforward is essential. This article aims to develop a framework for interpretable and task-flexible position-dependent feedforward thr ...

Cross-coupled iterative learning control

A computationally efficient approach applied to an industrial flatbed printer

Cross-coupled iterative learning control (ILC) can improve the contour tracking performance of manufacturing systems significantly. This paper aims to develop a framework for norm-optimal cross-coupled ILC that enables intuitive tuning of time- and iteration-varying weights of th ...
Feedforward control with task flexibility for MIMO systems is essential to meet ever-increasing demands on throughput and accuracy. The aim of this paper is to develop a framework for data-driven tuning of rational feedforward controllers in iterative learning control (ILC) for n ...
The increasing demands on throughput and accuracy of semiconductor manufacturing equipment necessitates accurate feedforward motion control that includes compensation of input nonlinearities. The aim of this paper is to develop a data-driven feedforward approach consisting of a W ...

Position-Dependent Snap Feedforward

A Gaussian Process Framework

Mechatronic systems have increasingly high performance requirements for motion control. The low-frequency contribution of the flexible dynamics, i.e., the compliance, should be compensated for by means of snap feedforward to achieve high accuracy. Position-dependent compliance, w ...
Machine learning techniques, including Gaussian processes (GPs), are expected to play a significant role in meeting speed, accuracy, and functionality requirements in future data-intensive mechatronic systems. This paper aims to reveal the potential of GPs for motion control appl ...
Feedforward control is essential to achieving good tracking performance in positioning systems. The aim of this paper is to develop an identification strategy for inverse models of systems with nonlinear dynamics of unknown structure using input-output data, which can be used to ...
Advanced feedforward control methods enable mechatronic systems to perform varying motion tasks with extreme accuracy and throughput. The aim of this paper is to develop a data-driven feedforward controller that addresses input nonlinearities, which are common in typical applicat ...

Cross-Coupled Iterative Learning Control for Complex Systems

A Monotonically Convergent and Computationally Efficient Approach

Cross-coupled iterative learning control (ILC) can achieve high performance for manufacturing applications in which tracking a contour is essential for the quality of a product. The aim of this paper is to develop a framework for norm-optimal cross-coupled ILC that enables the us ...
Machine learning techniques, including Gaussian processes (GPs), are expected to play a significant role in meeting speed, accuracy, and functionality requirements in future data-intensive mechatronic systems. This paper aims to reveal the potential of GPs for motion control appl ...
Mechatronic systems have increasingly stringent performance requirements for motion control, leading to a situation where many factors, such as position-dependency, cannot be neglected in feedforward control. The aim of this paper is to compensate for position-dependent effects b ...