FQ

F. Qu

10 records found

Josephson junctions defined in strong spin orbit semiconductors are highly interesting for the search for topological systems. However, next to topological edge states that emerge in a sufficient magnetic field, trivial edge states can also occur. We study the trivial edge states ...
Transport measurements in inverted InAs/GaSb quantum wells reveal a giant spin-orbit splitting of the energy bands close to the hybridization gap. The splitting results from the interplay of electron-hole mixing and spin-orbit coupling, and can exceed the hybridization gap. We ex ...
The spin-orbit interaction is investigated in a dual gated InAs/GaSb quantum well. Using an electric field, the quantum well can be tuned between a single-carrier regime with exclusively electrons as carriers and a two-carrier regime where electrons and holes coexist. The spin-or ...
Three-dimensional topological insulators (3D TIs) represent states of quantum matters in which surface states are protected by timereversal symmetry and an inversion occurs between bulk conduction and valence bands. However, the bulk-band inversion, which is intimately tied to th ...
A Corbino ring geometry is utilized to analyze edge and bulk conductance of InAs/GaSb quantum well structures. We show that edge conductance exists in the trivial regime of this theoretically predicted topological system with a temperature-insensitive linear resistivity per unit ...
Because of a strong spin-orbit interaction and a large Landé g-factor, InSb plays an important role in research on Majorana fermions. To further explore novel properties of Majorana fermions, hybrid devices based on quantum wells are conceived as an alternative approach to nanowi ...
We present transport and scanning SQUID measurements on InAs/GaSb double quantum wells, a system predicted to be a two-dimensional topological insulator. Top and back gates allow independent control of density and band offset, allowing tuning from the trivial to the topological r ...