DO
D.A. Olejnik
12 records found
1
Attitude control is an essential flight capability. Whereas flying robots commonly rely on accelerometers1 for estimating attitude, flying insects lack an unambiguous sense of gravity2,3. Despite the established role of several sense organs in attitude stabi
...
This paper proposes an integral approach for accurate ultra-wideband indoor position control of flapping-wing micro-air vehicles. Three aspects are considered to achieve a reliable and accurate position controller. The first aspect is a velocity/attitude flapping-wing model for d
...
This paper discusses a low-cost, open-source and open-hardware design and performance evaluation of a low-speed, multi-fan wind system dedicated to micro air vehicle (MAV) testing. In addition, a set of experiments with a flapping wing MAV and rotorcraft is presented, demonstrati
...
Natural fliers utilize passive and active flight control strategies to cope with windy conditions. This capability makes them incredibly agile and resistant to wind gusts. Here, we study how insects achieve this, by combining Computational Fluid Dynamics (CFD) analyses of flying
...
Flyers in nature equip different airflow sensing mechanisms to navigate through wind disturbances with remarkable flight stability. Embracing bio-inspiration, airflow sensing with conventional sensors has long been utilized in flight control for larger micro air vehicles (MAVs).
...
This paper proposes an integral approach for accurate ultra wide band indoor position control of flapping wing micro air vehicles. Three aspects are considered to reach a reliable and accurate position controller. The first aspect is a velocity/attitude flapping-wing model for dr
...
In the field of robotics, a major challenge is achieving high levels of autonomy with small vehicles that have limited mass and power budgets. The main motivation for designing such small vehicles is that compared to their larger counterparts, they have the potential to be safer,
...
This study investigates the wing deformation of the DelFly II in forward flight conditions. A measurement setup was developed that maintains adequate viewing axes of the flapping wings for all pitch angles. Recordings of a high-speed camera pair were processed using a point track
...
This study investigates the wing deformation of a flapping-wing micro air vehicle (MAV) in climbing and forward flight conditions. A measurement setup was developed that maintains adequate viewing axes of the wings for all pitch angles. Recordings of a high-speed camera pair are
...
In the field of robotics, a major challenge is achieving high levels of autonomy with small vehicles that have limited mass and power budgets. The main motivation for designing such small vehicles is that, compared to their larger counterparts, they have the potential to be safer
...
During flight, natural fliers flap, twist and bend their wings to enhance flight performance. Lift and thrust benefit from flexibility as well as from both passive and active wing deformation. At the same time, the active deformations are used for flight control. In this study, w
...
The goal of this paper is to analyse the mechanical resonance that appears during the oscillatory motion in the flapping wing robots. The prototype of the actuation mechanism has been proposed that involves a DC motor directly driving a set of bioinspired wings. The resulting mot
...