IA

I.M. Antolović

12 records found

Single-photon avalanche diode (SPAD) arrays are solid-state detectors that offer imaging capabilities at the level of individual photons, with unparalleled photon counting and time-resolved performance. This fascinating technology has progressed at a very fast pace in the past 15 ...
A 252 × 144 single-photon avalanche diode (SPAD) pixel sensor, called Ocelot, is reported for light detection and ranging (LiDAR). The sensor, fabricated in the 180-nm CMOS technology, features 1728 12-bit time-to-digital converters (TDCs) with 48.8-ps resolution (LSB). Each 126 ...
Per-pixel time-to-digital converter (TDC) architectures have been exploited by single-photon avalanche diode (SPAD) sensors to achieve high photon throughput, but at the expense of fill factor, pixel pitch and readout efficiency. In contrast, TDC sharing architecture usually feat ...
SPAD (single-photon avalanche diode) arrays are single-photon sensors, which enable photon counting and unparalleled time-resolved imaging. In this paper, we will detail the architecture and characteristics of three representative SPAD arrays, implemented in standard CMOS technol ...
A 252 × 144 single-photon avalanche diode (SPAD) pixel FLASH LiDAR is implemented in 180nm CMOS with 28.5μm pixel pitch and 28% fill factor. The sensor includes a collision detection bus with dynamic reallocation of 48.8 ps dual-clock time-to-digital converters (TDCs). It can ope ...
Confocal microscopes use photomultiplier tubes and hybrid detectors due to their large dynamic range, which typically exceeds the one of single-photon avalanche diodes (SPADs). The latter, due to their photon counting operation, are usually limited to an output count rate to 1/T< ...
The aim of this research is to explore the potential advantages of SPAD imagers used in microscopy. An ideal microscopy detector requires high sensitivity (high quantum efficiency QE or photon detection probability PDP), photon counting operation, low noise (dark current or dark ...
sCMOS imagers are currently utilized (replacing EMCCD imagers) to increase the acquisition speed in super resolution localization microscopy. Single-photon avalanche diode (SPAD) imagers feature frame rates per bit depth comparable to or higher than sCMOS imagers, while generatin ...
Summary form only given. Single photon detectors allow us to work with the weakest signals such as auto-fluorescent biological sources. In combination with time gated operation mode, an array of detectors can be used as Fluorescence Lifetime Imaging system with extremely high sen ...
The paper presents a camera comprising 512 × 128 pixels capable of single-photon detection and gating with a maximum frame rate of 156 kfps. The photon capture is performed through a gated single-photon avalanche diode that generates a digital pulse upon photon detection and thro ...
For many scientific applications, electron multiplying charge coupled devices (EMCCDs) have been the sensor of choice because of their high quantum efficiency and built-in electron amplification. Lately, many researchers introduced scientific complementary metal-oxide semiconduct ...
While CMOS single-photon avalanche diode (SPAD) technology has steadily advanced, improving noise, timing resolution, and sensitivity, spatial resolution has been increasing as well. The increase in the number of pixels has made a comprehensive analysis of nonuniformity and its e ...