GB

G. Borghi

11 records found

Authored

Nuclear medical imaging (NMI) is the branch of nuclear medicine aimed at imaging the in-vivo distribution of specific compounds labeled with radioactive elements (radiotracers) inside animals (preclinical applications) or patients (clinical applications). These compounds are deve ...

Recently, a monolithic scintillator detector for time-of-flight (TOF)/depth-of-interaction (DOI) positron emission tomography (PET) was developed. It has a detector spatial resolution of ∼1.7 mm full-width-at-half-maximum (FWHM), a coincidence resolving time (CRT) of ∼215 ps F ...

The goal of this simulation study is the performance evaluation and comparison of six potential designs for a time-of-flight PET scanner for pediatric patients of up to about 12 years of age. It is designed to have a high sensitivity and provide high-contrast and high-resoluti ...

We have recently built and characterized the performance of a monolithic scintillator detector based on a 32 mm × 32 mm × 22 mm LYSO:Ce crystal read out by digital silicon photomultiplier (dSiPM) arrays coupled to the crystal front and back surfaces in a dual-sided readout (DS ...

Towards monolithic scintillator based TOF-PET systems

Practical methods for detector calibration and operation

Gamma-ray detectors based on thick monolithic scintillator crystals can achieve spatial resolutions <2 mm full-width-at-half-maximum (FWHM) and coincidence resolving times (CRTs) better than 200 ps FWHM. Moreover, they provide high sensitivity and depth-of-interaction (DOI) ...

A 32 mm × 32 mm × 22 mm monolithic LYSO

Ce detector with dual-sided digital photon counter readout for ultrahigh-performance TOF-PET and TOF-PET/MRI

New applications for positron emission tomography (PET) and combined PET/magnetic resonance imaging (MRI) are currently emerging, for example in the fields of neurological, breast, and pediatric imaging. Such applications require improved image quality, reduced dose, shorter s ...