JL
J.D. Lauth
10 records found
1
Colloidal PbS nanoplatelets (NPLs) are highly interesting materials for near-infrared optoelectronic applications. We use ultrafast transient optical absorption spectroscopy to study the characteristics and dynamics of photoexcited excitons in ultrathin PbS NPLs with a cubic crys
...
Solution-processable two-dimensional (2D) semiconductors with chemically tunable thickness and associated tunable band gaps are highly promising materials for ultrathin optoelectronics. Here, the properties of free charge carriers and excitons in 2D PbS nanosheets of different th
...
An optical switch with two distinct resonances is formed by combining PbS nanocrystals and the conductive polymer poly[sodium 2-(2-ethynyl-4-methoxyphenoxy)acetate] (PAE) into a hybrid thin film. Infrared excitation of the nanocrystals invokes charge transfer and consecutive pola
...
Charge carrier dynamics of semiconductor nano-heterostructures are determined by band alignment and lattice mismatch of the adjacent materials. However, quantum efficiencies for the separation of excited charge carriers at such an interface are hard to predict and cannot yet be e
...
In this work, we investigate the occurrence of localized surface plasmon resonances (LSPRs) in different nickel sulfide nanostructures. Therefore, spherical and anisotropic nickel sulfide nanoparticles (NPs) are synthesized and analyzed regarding their optical properties by UV/vi
...
All-printed transistors consisting of interconnected networks of various types of twodimensional nanosheets are an important goal in nanoscience. Using electrolytic gating, we demonstrate all-printed, vertically stacked transistors with graphene source, drain, and gate electrodes
...
We functionalize PbS nanocrystals with the organic semiconductor Zn β-tetraaminophthalocyanine to design a nanostructured solid-state material with frequent organic–inorganic interfaces. By transient absorption and fluorescence spectroscopy, we investigate the optoelectronic resp
...
Two-dimensional (2D) semiconductors hold high potential for the implementation of efficient ultrathin electronics (e.g. field-effect transistors, light emitting diodes and solar cell devices). In recent years, colloidal methods to synthesize ultrathin 2D materials have been devel
...
We simultaneously surface-functionalize PbS nanocrystals with Cu 4,4′,4′′,4′′′-tetraaminophthalocyanine and assemble this hybrid material into macroscopic monolayers. Electron microscopy and X-ray scattering reveal a granular mesocrystalline structure with strong coherence betwee
...
The implementation of next generation ultrathin electronics by applying highly promising dimensionality-dependent physical properties of two-dimensional (2D) semiconductors is ever increasing. In this context, the van der Waals layered semiconductor InSe has proven its potential
...