AD

Andreas Demosthenous

39 records found

Wireless biosensors are playing a pivotal role in health monitoring, disease detection and management. The development of wireless biosensor nodes and networks strongly relies on the design of novel low-power, low-cost and flexible CMOS sensor readouts. This brief presents a CMOS ...
Wireless data telemetry for implantable medical devices (IMDs) has, in general, been limited to a few Mbps, and used for applications such as transmitting recordings from an implanted monitoring device, or uploading commands to an implanted stimulator. However, modern neural inte ...
The original paper entitled "Practical Inductive Link Design for Biomedical Wireless Power Transfer: A Tutorial" [1], aimed to provide an accessible review and guide, describing the necessary steps for designing effective biomedical inductive links, without the need for FEM Softw ...
Short-range, low-power, high data-rate telemetry is an increasingly desirable feature for implantable medical devices (IMDs), and is commonly implemented using an inductive link. Pulse Harmonic Modulation (PHM) provides the desired high data rates and low power consumption, but r ...
Wireless sensing systems are becoming popular in a range of applications, particularly in the case of biomedical circuits and food monitoring systems. A typical wireless sensing system, however, may require considerable complexity to perform the necessary analog to digital conver ...
Point-of-care (PoC) diagnostics rely on the design of low-power and miniaturized readout units that can offer rapid and accurate test results, replacing the need for specialized equipment. CMOS technology can be exploited in order to design complex systems while achieving high en ...
There is growing demand for circuits that can provide ever greater performance from a minimal power budget. Example applications include wireless sensor nodes, mobile devices, and biomedical implants. High speed clock circuits are an integral part of such systems, playing roles s ...
Wireless power transfer systems, particularly those based on inductive coupling, provide an increasingly attractive method to safely deliver power to biomedical implants. Although there exists a large body of literature describing the design of inductive links, it generally focus ...
Point-of-care systems for the detection of infectious diseases are in great demand especially in developing countries. Lateral flow immunoassays are considered ideal biosensors for point-of-care diagnostics due to their numerous advantages. However, to quantify their results a lo ...
A novel pixel architecture for CMOS image sensors is presented. It uses only one amplifier for both integration of the photocurrent and in-pixel noise cancelation, thus minimizing power consumption. The circuit is specifically designed to be used in readout systems for lateral fl ...
This paper presents the design of a 1024-channel dual-modality CMOS biosensor suitable for both capacitive sensing and impedance spectroscopy. The chip serves as a platform for detection, localization and monitoring of bacteria and can be adopted for affinity-based assays. The ch ...
This paper presents a multi-channel dual-mode CMOS analogue front-end (AFE) for electrochemical and bioimpedance analysis. Current-mode and voltage-mode readouts, integrated on the same chip, can provide an adaptable platform to correlate single-cell biosensor studies with large- ...
This paper presents a fully implantable multi-channel neural prosthesis for epidural stimulation. The prosthesis features three telemetry-operated independent stimulators providing in total eighteen stimulation channels. The stimulator circuits were implemented in a 0.6-μm CMOS t ...

Live demonstration

An implantable wireless multi-channel neural prosthesis for epidural stimulation

A fully implantable multi-channel neural prosthesis for epidural stimulation will be demonstrated. The prosthesis features three telemetry-operated independent stimulators providing in total eighteen stimulation channels. The stimulator circuits were implemented in a 0.6-μm CMOS ...
Clinical deep brain stimulation (DBS) uses 4 cylindrical electrodes driven in monopolar or bipolar configurations. This yields a spherical stimulation field around the electrode modulating both targeted and untargeted areas. This paper presents an approach in which activation fie ...
This paper presents the operation of a dualmode wideband CMOS analog front-end (AFE) for electrical impedance spectroscopy. The chip combines two current-readout (CR) channels and four voltage-readout (VR) channels suitable for both bipolar and tetrapolar EIS analysis. The chip a ...
This paper presents a second-generation integrated circuit for the Active Books neural stimulation microsystem. It provides multi-channel stimulation with versatile control of stimulation profiles and reduced crosstalk from other stimulation channels. The new design features enha ...
Inductive powering for implanted medical devices, such as implantable biosensors, is a safe and effective technique that allows power to be delivered to implants wirelessly, avoiding the use of transcutaneous wires or implanted batteries. Wireless powering is very sensitive to a ...
Inductive powering for implanted medical devices is a commonly employed technique, that allows for implants to avoid more dangerous methods such as the use of transcutaneous wires or implanted batteries. However, wireless powering in this way also comes with a number of difficult ...