IH
I. Hermann
9 records found
1
T2-hyperintense lesions are the key imaging marker of multiple sclerosis (MS). Previous studies have shown that the white matter surrounding such lesions is often also affected by MS. Our aim was to develop a new method to visualize and quantify the extent of white mat
...
Magnetic Resonance Imaging compatible Elastic Loading Mechanism (MELM)
A minimal footprint device for MR imaging under load
Quantitative Magnetic Resonance Imaging (MRI) can enable early diagnosis of knee cartilage damage if imaging is performed during the application of load. Mechanical loading via ropes, pulleys and suspended weights can be obstructive and require adaptations to the patient table. I
...
Purpose: To implement a free-breathing sequence for simultaneous quantification of (Formula presented.), (Formula presented.), and (Formula presented.) for comprehensive tissue characterization of the myocardium in a single scan using a multi-gradient-echo readout with saturation
...
Background: To develop a regression neural network for the reconstruction of lesion probability maps on Magnetic Resonance Fingerprinting using echo-planar imaging (MRF-EPI) in addition to T1, T2∗, NAWM, and GM- probability maps. Methods: We performed MRF-EPI measureme
...
Purpose: To develop an accelerated postprocessing pipeline for reproducible and efficient assessment of white matter lesions using quantitative magnetic resonance fingerprinting (MRF) and deep learning. Methods: MRF using echo-planar imaging (EPI) scans with varying repetition an
...
Measurement of the bloodT1time using conventional myocardialT1mapping methods hasgained clinical significance in the context of extracellular volume (ECV) mapping and synthetichematocrit (Hct). However, its accuracy is potentially compromised by in-flow ofnon-inverted/non-saturat
...
We propose a novel multi-component analysis for MR fingerprinting that enables detection of small lesions, while taking partial volume effects into account. The algorithm uses a joint sparsity constraint limiting the number of components in local regions. It is evaluated in simul
...
Purpose: To evaluate the use of magnetic resonance fingerprinting (MRF) for simultaneous quantification of T1 and T*2 in a single breath-hold in the kidneys. Methods: The proposed kidney MRF sequence was based on MRF echo-planar imaging. Thirty-five measurem
...