At present, tracking data for planetary missions largely consists of radio observables: range-rate (Doppler), range and angular position (VLBI/Δ DOR). Future planetary missions may use Interplanetary Laser Ranging (ILR) as a tracking observable. Two-way ILR will provide range dat
...
At present, tracking data for planetary missions largely consists of radio observables: range-rate (Doppler), range and angular position (VLBI/Δ DOR). Future planetary missions may use Interplanetary Laser Ranging (ILR) as a tracking observable. Two-way ILR will provide range data that are about 2 orders of magnitude more accurate than radio-based range data. ILR does not produce Doppler data, however. In this article, we compare the relative strength of radio Doppler and laser range data for the retrieval of parameters of interest in planetary missions, to clarify and quantify the science case of ILR, with a focus on geodetic observables. We first provide an overview of the near-term attainable quality of ILR, in terms of both the realization of the observable and the models used to process the measurements. Subsequently, we analyse the sensitivity of radio Doppler and laser range measurements in representative mission scenarios for parameters of interest. We use both an analytical approximation and numerical analyses of the relative sensitivity of ILR and radio Doppler observables for more general cases. We show that mm-precise range normal points are feasible for ILR, but mm-level accuracy and stability in the full analysis chain are unlikely to be attained, due to a combination of instrumental and model errors. We find that ILR has the potential for superior performance in observing signatures in the data with a characteristic period of greater than 0.33–1.65 hours (assuming 2–10 mm uncertainty for range and 10 μ m/s at 60 s for Doppler). This indicates that Doppler tracking will typically remain the method of choice for gravity field determination and spacecraft orbit determination in planetary missions. ILR data will be able to supplement the orbiter tracking data used for the estimation of parameters with a once-per-orbit signal. Laser ranging data, however, are shown to have a significant advantage for the retrieval of rotational and tidal characteristics from landers. Similarly, laser ranging data will be superior for the construction of planetary ephemerides and the improvement of solar system tests of gravitation, both for orbiter and for lander missions.
@en