European electricity markets ensure the matching between supply and demand at all times. Due to their time-scale operations, the balancing markets are the last resources to achieve so and ensure the grid frequency. The increasing shares of non-dispatchable power capacities intens
...
European electricity markets ensure the matching between supply and demand at all times. Due to their time-scale operations, the balancing markets are the last resources to achieve so and ensure the grid frequency. The increasing shares of non-dispatchable power capacities intensify the demand for flexibility. District heating systems (DHs) are potential sources of flexibility if interface technologies are in place like CHP or power-to-heat, together with thermal storage. This study assesses the technical potential of DHs to contribute to frequency containment reserves (FCR), automatic and manual frequency restoration reserves (aFRR and mFRR) markets. Through a review of case-studies, we gain insight and derive appropriate assumptions to estimate the potential at country and EU levels. Based on the POTEnCIA Central scenario up to 2050 — a description of the evolution of the EU energy system with the assumption of no further policies introduced beyond 2017 —, we find that the potential is highest for the provision of aFRR, followed by mFRR and FCR. Specifically, the aFRR technical potential is currently 32 GW — 4 times the aFRR contracted in 2019 in the EU — and it only slightly decreases by 2050. Overall, this study highlights the lack of data on current (and future) DHs and their variety in size and composition. A sensitivity analysis is performed by examining different scenarios for DHs deployment. This research emphasizes the large untapped potential to exploit flexibility from DHs, however, the evaluation of the actual potential shall be done on a case-by-case basis.@en