AA

Abhijit Anand

8 records found

Contextual ranking models have delivered impressive performance improvements over classical models in the document ranking task. However, these highly over-parameterized models tend to be data-hungry and require large amounts of data even for fine-tuning. In this article, we prop ...

QuanTemp

A real-world open-domain benchmark for fact-checking numerical claims

With the growth of misinformation on the web, automated fact checking has garnered immense interest for detecting growing misinformation and disinformation. Current systems have made significant advancements in handling synthetic claims sourced from Wikipedia, and noteworthy prog ...
An significant challenge in text-ranking systems is handling hard queries that form the tail end of the query distribution. Difficulty may arise due to the presence of uncommon, underspecified, or incomplete queries. In this work, we improve the ranking performance of hard or dif ...

Understanding the User

An Intent-Based Ranking Dataset

As information retrieval systems continue to evolve, accurate evaluation and benchmarking of these systems become pivotal. Web search datasets, such as MS MARCO, primarily provide short keyword queries without accompanying intent or descriptions, posing a challenge in comprehendi ...
Dual-encoder-based dense retrieval models have become the standard in IR. They employ large Transformer-based language models, which are notoriously inefficient in terms of resources and latency.We propose Fast-Forward indexes - vector forward indexes which exploit the semantic m ...
Contextual models like BERT are highly effective in numerous text-ranking tasks. However, it is still unclear as to whether contextual models understand well-established notions of relevance that are central to IR. In this paper, we use probing, a recent approach used to analyze ...
Contextual ranking models have delivered impressive performance improvements over classical models in the document ranking task. However, these highly over-parameterized models tend to be data-hungry and require large amounts of data even for fine tuning. This paper proposes a si ...